Answer
What makes up a perfect planet? It is the right distance from the Sun, it is protected from harmful solar radiation by its magnetic field, it is kept warm by an insulating atmosphere, and it has the right chemical ingredients for life, including water and carbon. Proportionate Ozone Layer and Light amount. According to the panspermia hypothesis, microscopic life—distributed by meteoroids, asteroids and other small Solar System bodies—may exist throughout the Universe. This is the perfect planet. In the end a perfect planet includes SUSTAINBLE DEVELOPEMNT IN EVERY ASPECT OF LIFE!
Explanation:
Answer:
angular acceleration is -0.2063 rad/s²
Explanation:
Given data
mass m = 95.2 kg
radius r = 0.399 m
turning ω = 93 rpm
radial force N = 19.6 N
kinetic coefficient of friction μ = 0.2
to find out
angular acceleration
solution
we know frictional force that is = radial force × kinetic coefficient of friction
frictional force = 19.6 × 0.2
frictional force = 3.92 N
and
we know moment of inertia that is
γ = I ×α = frictional force × r
so
γ = 1/2 mr²α
α = -2f /mr
α = -2(3.92) /95.2 (0.399)
α = - 7.84 / 37.9848 = -0.2063
so angular acceleration is -0.2063 rad/s²
Answer:
25 m/s
Explanation:
Given that:
Initial speed, u = 4 m/s
Final velocity, V = 11 m/s
Time, t = 8 seconds
t2, = 16 seconds
Acceleration, a= (change in velocity) / time interval
a = (11 - 4) / 8
a = 7 / 8 = 0.875m/s²
Final velocity, v2 ;
Acceleration * t2
0.875 * 16 = 14
V2 = 14 m/s
Final speed : v + v2 = (11 + 14)m/s = 25m/s
Answer:
(a) 3.44 x 10^-3 m^3/s
(b) 8.4 m/s
Explanation:
area of water line, A = 5.29 x 10^-3 m
number of holes, N = 15
Speed of water in line, V = 0.651 m/s
(a) Volume flow rate is given by
V = area of water line x speed of water in water line
V = 5.29 x 10^-3 x 0.651 = 3.44 x 10^-3 m^3/s
(b) area of one hole, a = 4.13 x 10^-4 m
Let v be the velocity of water in each hole
According to the equation of continuity
A x V = a x v
5.29 x 10^-3 x 0.651 = 4.1 x 10^-4 x v
v = 8.4 m/s