Answer:
<em>The 6000 lines per cm grating, will produces the greater dispersion .</em>
Explanation:
A diffraction grating is an optical component with a periodic (usually one that has ridges or rulings on their surface rather than dark lines) structure that splits and diffracts light into several beams travelling in different directions.
The directions of the light beam produced from a diffraction grating depend on the spacing of the grating, and also on the wavelength of the light.
For a plane diffraction grating, the angular positions of principle maxima is given by
(a + b) sin ∅n = nλ
where
a+b is the distance between two consecutive slits
n is the order of principal maxima
λ is the wavelength of the light
From the equation, we can see that without sin ∅ exceeding 1, increasing the number of lines per cm will lead to a decrease between the spacing between consecutive slits.
In this case, light of the same wavelength is used. If λ and n is held constant, then we'll see that reducing the distance between two consecutive slits (a + b) will lead to an increase in the angle of dispersion sin ∅. So long as the limit of sin ∅ not greater that one is maintained.
Answer:
The ball will be attracted to the negatively charged plate. It'll touch and pick up some electrons from the plate so that the ball becomes negatively charged. Immediately the ball is repelled by the negative plate and is attracted to the positive plate. The ball gives up electrons to the positive plate so that it is positively charged and suddenly attracts to the negative plate again, flies over to it and picks up enough electrons to be repulsed by negative plate and again to the positive plate and that continues.
You'll hear that force called different things in different places. It
may be called "electromotive force", "EMF", "potential difference",
or "voltage".
It's just a matter of somehow causing the two ends of the wire
to have different electrical potential. When that happens, the
free electrons in the copper suddenly have a burning desire to
travel ... away from the end that's more negative, toward the end
that's more positive, and THAT's an "electric current".
Net force = (mass) x (acceleration)... that’s Newton’s 2nd law of motion.
Net force = (15kg) x (10 m/s squared)
Net force = 150 Newtons.
To find the relative distance from one point to another it is necessary to apply the Relativity equations.
Under the concept of relativity the distance measured from a spatial object is given by the equation

Where
= Relative length
v = Velocity of the spaceship
c = Speed of light
Replacing with our values we have that




Therefore the distance between Mars and Venus measured by the Martin is 