Answer:
80%
Explanation:
Efficiency = Power output / Power input × 100 %
To calculate efficiency we need to find power output of electric pump.
We can use,
Work done = Energy change
Work done per second = Energy change per second
Work done per second = Power
Therefore, Power = Energy change per second
= Change in potential energy of water per second
=mgh / t
= 200× 10×6 / 10
= 1200 W = 1.2 kW
Now use the first equation to find efficiency,
Efficiency =
× 100%
= 80 %
So simply it to 120m/m for 120 minutes. So then you multiply 120x120 and that equals 14,400
Out of the 3 types of heat transfer, this scenario would be most likely to be an example of convection.
Convection is where the transferring of heat is resulted through the movements of fluid, but in this case it is air. What happens is that when a part of the whole mass of air is heated, the hotter air rises and the cooler air descends and takes place of the hotter air before it was heated. Then, the cooler air becomes hotter and the hotter air before becomes the cooler air of both, which then results to the repeat of the exchange of places. This creates a motion until the whole mass has achieved mutual temperature, the heat source has stopped or extinguished, or there is a shift of temperature.
I got you b, V(final)^2=V(initial+2acceleration*displacement
So this turns to (0m/s)^2=(50m/s)^2+2(9.8)(d) so just flip it all around to isolate d so you get
-(50m/s)^2/2(9.8) = d so you get roughly 12.7555 meters up
Answer:
V = 3.17 m/s
Explanation:
Given
Mass of the professor m = 85.0 kg
Angle of the ramp θ = 30.0°
Length travelled L = 2.50 m
Force applied F = 600 N
Initial Speed u = 2.00 m/s
Solution
Work = Change in kinetic energy
