Answer:
754.6 m
Explanation:
The GPE (Gravitational potential energy) of an object with respect to the ground is given by

where
m is the mass of the object
g = 9.8 m/s^2 is the acceleration due to gravity
h is the heigth above the ground
Here we have
m = 12,400.05 kg is the mass
GPE = 91,700,000.00J is the GPE
Solving the formula for h, we find the heigth:

Answer:
If we put pressure on a solid or a liquid, there is essentially no change in volume. ... The kinetic-molecular theory explains why gases are more compressible than either liquids or solids. Gases are compressible because most of the volume of a gas is composed of the large amounts of empty space between the gas particles.
Explanation:
Answer:
11.94
Explanation:
Remark
Find the Potential Energy at the top.
Givens
m = 65 kg
h = 16.2 m
g = 9.81
PE = 65 * 9.81 * 16.2
PE = 10329.93
The tricky part is what do you do about Friction?
Formula
PE = Friction + KE
Solution
PE = 10329.93 Joules
Friction = 5700 Joules
Find the KE
10329.93 = 5700 + KE
KE = 10329.93 - 5700
KE = 4629.93
Find V from the KE formula
KE = 4629.93
m = 65
KE = 1/2 m v^2
KE = 1/2 65 v^2
4629.93 = 1/2 65 v^2
v^2 = 142.46
v = √142.46
v = 11.94
Answer:
what that guy said
Explanation:
because he provides evidence
For maximum radiation protection the suggested distance between array fan-beam scanner source and the operator is 2m.
The Fan beam 5 position reference system (PRS) uses accurate time-of-flight laser technology to determine vessel position relative to custom reflectors.
A fan beam allows only the measurement of the azimuth angle. A fan beam, one with a narrow beam width in azimuth and a broad beam width in elevation, can be obtained by illuminating an asymmetrical section of the paraboloid.
The operators’ desk should be positioned at least 1m away from a pencil beam, and at least 2m from a fan-beam system. Some older models, that are not now common, require a distance of 3.5 m.
To learn more about scanner here
brainly.com/question/28174696
#SPJ4