The metal ball lost energy while the putty ball gained energy.
<h3>What is momentum?</h3>
Momentum is the product of mass and velocity of the body. We must note that momentum before collision is equal to momentum after collision.
1) Kinetic energy before collision = 1/2mv^2 = 0.5 * 6 * 4 = 12 J
2) kinetic energy after collision = 0.5 * 6 * 2= 6 J
3) Kinetic energy of putty ball = 0.5 * 6 * 2= 6 J
4) Energy lost by the metal ball = 12 J - 6 J = 6 J
5) Energy gained by the putty ball = 6 J - 0J = 6 J
6) The rest of the energy was converted to heat after the collision.
Learn more about kinetic energy: brainly.com/question/999862
Newton's law of universal gravitation states that a particle attracts every other particle in the universe using a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers
Answer:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. ... For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes.
A 150-g metallic rod with a specific heat of 0.11 cal/g.°C absorbs 82.5 calories of heat and its temperature increases from 20 °C to 25 °C.
<h3>What is specific heat?</h3>
It is the heat required to raise the temperature of the unit mass of a given substance by a given amount (usually one degree).
A metallic rod of mass 150 g (m) absorbs 82.5 cal of heat (Q) and its temperature raises from 20 °C to 25 °C. We can calculate the specific heat (c) of the metal using the following expression.
Q = c × m × ΔT
c = Q / m × ΔT
c = 82.5 cal / 150 g × (25 °C - 20 °C) = 0.11 cal/g.°C
A 150-g metallic rod with a specific heat of 0.11 cal/g.°C absorbs 82.5 calories of heat and its temperature increases from 20 °C to 25 °C.
Learn more about specific heat here: brainly.com/question/21406849
#SPJ1