The velocity vector of the planet points toward the center of the circle is the following is true about a planet orbiting a star in uniform circular motion.
A. The velocity vector of the planet points toward the center of the circle.
<u>Explanation:</u>
Motion of the planet around the star is mentioned to be uniform and around a circular path. Objects in uniform circular motion motion has constant angular speed but the velocity of the object will not remain constant. Since the planet is in circular motion the direction of velocity vector at a particular point is tangential to the circular path at that particular point.
Thus at every point, the direction of velocity vector changes and this means the velocity is never constant. The objects in uniform circular motion has centripetal acceleration which means that velocity vector of the planet points toward the center of the circle.
The force of the racket affects the ball's motion because it changes the momentum of the ball.
<h3>Impulse received by the ball</h3>
The impulse received by the ball through the racket affects the motion because it changes the momentum of the ball.
The ball which is initially at rest, will gain momentum after been hit with the racket.
J = ΔP = Ft
where;
- J is the impulse received by the ball
- ΔP is change in momentum of the ball
- F is the applied force
- t is the time of action
Thus, the force of the racket affects the ball's motion because it changes the momentum of the ball.
Learn more about impulse here: brainly.com/question/25700778
Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse:
The answer would be "the vector sum of forces acting on a particle or body."
Hope that helped ^^