1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KIM [24]
3 years ago
14

What types of problems might an electrical engineer need to solve?

Engineering
1 answer:
aleksandr82 [10.1K]3 years ago
8 0

Answer:

sectores industriales, comerciales o públicos, o para el uso doméstico.

Explanation:

You might be interested in
Sometimes, steel studs may not be used on outside walls because they are?
Helen [10]

Answer:

We can describe 15×-10 as an expression. we would describe 6×-2< 35 as an...

Explanation:

We can describe 15×-10 as an expression. we would describe 6×-2< 35 as an...

6 0
3 years ago
What are the four causes of electrical faults?
Arada [10]

Answer:

Electrical faults are also caused due to human errors such as selecting improper rating of equipment or devices, forgetting metallic or electrical conducting parts after servicing or maintenance, switching the circuit while it is under servicing, etc.

Explanation:

6 0
3 years ago
cThe Mars Rover Spirit got stuck in the Martian sand. The wheels kept slipping. Attempts to free it were futile. Discuss the typ
IgorC [24]

Answer:

Improved/ advanced types of Actuators include servo systems, create a large range of actuator motion in response to the changing needs of the operational environment or process.

Actuators are local or automated suppliers of working motion.

Hydraulic and air cylinders can be classified as single-acting cylinders, meaning that the energy source result in movement in one direction and a spring is used for the other direction.

Explanation:

An actuator control system is referred to as any electronic, electrical, or electromechanical system often used to activate an actuator, control the direction as well as extent and duration of its output. Actuator control systems could take the form of extremely simple, manually-operated, start-and-stop stations, either sophisticated or programmable computer systems. The more improved/ advanced types include servo systems that produce a large range of actuator motion in response to the changing needs of the operational environment or process. This type of actuator control system uses an interface arrangement that assimilates feedback from the process or mechanism and adjusts the actuator in the right way. Most actuator systems will include at least a set of travel limits that prevent the actuator destroying itself or the secondary mechanism.

Actuators are local or automated suppliers of working motion. They are used to changes, adjust, or move a secondary mechanism, where a physical operator cannot intervene directly. They are denoted by a large range of varying types using electrical and electromagnetic, hydraulic, or pneumatic power sources to create linear or rotary outputs. One element they all have in common is the actuator control system used to start, stop, and adjust the range, speed, and duration of the working motion.

Actuators can produce a linear motion, rotary motion or oscillatory motion which means they can create motion in one direction, in a circular motion or in opposite directions at regular intervals. Hydraulic and air cylinders can be classified as single-acting cylinders, meaning that the energy source result in movement in one direction and a spring is used for the other direction.

7 0
3 years ago
96/64 reduced to its lowest term
Marina CMI [18]

Answer:

3/2

Explanation:

8 0
2 years ago
A converging nozzle has an exit area of 0.001 m2. Air enters the nozzle with negligible velocity at a pressure of 1 MPa and a te
Artyom0805 [142]

Explanation:

a converging nozzle has an exit area of 0.001 m2. Air enters the nozzle with negligible velocity at a pressure of 1 MPa and a temperature of 360 K. For isentropic flow of an ideal gas with k = 1.4 and the gas constant R = Ru/MW = 287 J/kg-K, determine the mass flow rate in kg/s and the exit Mach number for back pressures

100% (3 ratings)

A_2 = 0.001 m^2 P_1 = 1 MPa, T_1 = 360 k P_2 = 500 kpa p^gamma - 1/gamma proportional T (1000/500)^1.4 - 1/1.4 = (360/T_2) 2^4/14 = 360/T_2 T_2

3 0
2 years ago
Other questions:
  • An aluminium alloy tube has a length of 750 mm at a temperature of 223°C. What will be its length at 23°C if its coefficient of
    7·1 answer
  • A gear motor can develop 2 hp when it turns at 450rpm. If the motor turns a solid shaft with a diameter of 1 in., determine the
    7·1 answer
  • The state of plane strain on an element is:
    15·1 answer
  • The specific gravity of a substance that has mass of 10 kg and occupies a volume of 0.02 m^3 is a) 0.5 b) 1.5 c) 2.5 d) 3.5 e) n
    11·1 answer
  • A thick oak wall initially at 25°C is suddenly exposed to gases for which T =800°C and h =20 W/m2.K. Answer the following questi
    5·1 answer
  • A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl
    9·2 answers
  • Which of the following correctly describes caster?
    8·1 answer
  • The van der Waals equation is a modification of the ideal gas equation. What two factors does this equation account for? A. (1)
    6·1 answer
  • As you push a toggle bolt into a wall, the
    13·1 answer
  • with a digital system, if you have measured incorrectly and use too low of a kvp for adequate penetration, what do you need to d
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!