The absolute zero in temperature refers to the minimal possible temperature. It is the temperature at which the molecules of a system stop moving, so it is a really useful reference point.
<h3>Why absolute zero can't be reached?</h3>
It would mean that we need to remove all the energy from a system, but to do this we need to interact with the system in some way, and by interacting with it we give it "some" energy.
Actually, from a quantum mechanical point of view, the absolute zero has a residual energy (so it is not actually zero) and it is called the "zero point". This happens because it must meet <u>Heisenberg's uncertainty principle</u>.
So yes, the absolute zero can't be reached, but there are really good approximations (At the moment there is a difference of about 150 nanokelvins between the absolute zero and the smallest temperature reached). Also, there are a lot of investigations near the absolute zero, like people that try to reach it or people that just need to work with really low temperatures, like in type I superconductors.
So, concluding, why does the concept exist?
- Because it is a reference point.
- It is the theoretical temperature at which the molecules stop moving, defining this as the <u>minimum possible temperature.</u>
If you want to learn more about the absolute zero, you can read:
brainly.com/question/3795971
Answer:
The voltage needed to accelerate the electron beam is 2.46 x 10^16 Volts
Explanation:
The rate of electron flow is given as:
q = 1015 electrons per second
The total current is given by:
Total Current = (Rate of electron flow)(Charge on one electron)
Total Current = I = (1015 electrons/s)(1.6 x 10^-19 C/electron)
I = 1.624 x 10^-16 A
Now, we know that electric power is given as:
Electric Power = Current x Voltage
P = IV
V = P/I
V = 4 W/1.624 X 10^-16 A
<u>V = 2.46 x 10^16 Volts</u>
Answer:
810 g
Explanation:
Mass is the product of density and volume:
m = ρV
m = (8.1 g/cm³)(100 cm³) = 810 g
The mass of the chunk is 810 grams.
Answer:
2750
Explanation:
The number of windings and the voltage are proportional.
__
Let n represent the number of windings to produce 110 Vac. Then the proportion is ...
n/110 = 300,000/12,000
n = 110(300/12) = 2750 . . . . multiply by 110
2750 windings would be needed to produce 110 Vac at the output.
Answer:
It made information easily accessible and ensured individuals became more vast in subject topics of interest.
Explanation:
Information revolution is different and unique and it came with the advent of computers and the internet. A lot of information is stored there which is too large and complex for the human brain.This helped people to access information without much stress as informations about almost every subject is on the Internet.
Individuals can check the informations up and become more vast in interested topics.