1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sammy [17]
3 years ago
6

When a solute is added to a solution why does it remain homogeneous?

Chemistry
2 answers:
Olenka [21]3 years ago
8 0
<h3>Answer:</h3>

                 When a solute is added to a solution, it remains homogeneous because the solute is soluble in given solvent.

<h3>Explanation:</h3>

                         Homogeneous mixtures, also called true solutions are those mixtures in which the components proportions are same throughout in any given sample. For example, the mixture of table salt (NaCl) and water. When the solution is unsaturated and further NaCl is added to it, it will dissolve the NaCl because the saturation point is still not reached. Remember, as "<em>Like Dissolves Like</em>" NaCl being polar in nature will interact with water molecules and will dissociate into Na⁺ and Cl⁻ ions surrounded by δ- O and δ+ H atoms of water molecules.

<h3>Conclusion:</h3>

                  In order to form a Homogeneous mixture the solution must be unsaturated, solvent must have affinity for incoming solute particles and the size of solute should be equal to 1 Â (Angstrom).

vodomira [7]3 years ago
7 0
That is because it dissolves and you cannot see the constituents of the solution. If you added a rock to water, it would be heterogeneous because you could see the elements of the solution, however, here you can't, so it's homogeneous.
You might be interested in
An example of an ____ reaction is when metals react with oxygen to form metal _____.​
Reptile [31]

<em>An example of a</em><em>n</em><em> </em><em><u>exothermic</u></em><em> </em><em>reaction is when metals react with oxygen to form metal</em><em> </em><em><u>Oxides</u></em>

<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em>helped you- have a good day bro cya)

4 0
3 years ago
The maximum efficiency possible in an energy conversion process that is not limited by the second law of thermodynamics
Anna [14]

Answer:

100 %

Explanation:

The maximun efficiency possible (whem not limited by the  second law of thermodynamics) happens when all the energy used is transformed into the type of energy we required with no other transformations.

For example, in an engine we want that all the energy we supply is being converted to work. That's the ideal case, but in reality always some of that energy is lost in the form of heat.

5 0
3 years ago
1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?
Sedbober [7]
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
5 0
3 years ago
Read 2 more answers
Wendy made the following diagram shown to represent the solar eclipse.
Pavlova-9 [17]
The moon should be between the sun and Earth
7 0
3 years ago
Read 2 more answers
What minimum energy is required to excite a vibration in HF?
Elodia [21]

Answer:

The energy of a vibrating molecule is quantized much like the energy of an electron in the hydrogen atom. The energy levels of a vibrating molecule are given by the equation: En=(n+21)hv where n is a quantum number with possible values of 1, 2, ... and v is the frequency of vibration.

Explanation:

hope it helps.

have a wonderful day!

7 0
3 years ago
Other questions:
  • What is the difference between a terrestrial planet and a gas giant
    9·1 answer
  • The pH of a solution is 5.0. To a 10 ml of this
    6·1 answer
  • What holds combinations of atoms together in molecules? protons and electrons atomic magnetism chemical bonds nuclear forces?
    15·2 answers
  • The density is 5.4 g/mL and the volume is 12.9 mL.
    13·1 answer
  • Hydrochloric is <br> an acid<br> a base<br> a neutral
    11·1 answer
  • Strontium hydroxide, sr(oh)2, is reacted with trifluoroacetic acid, cf3cooh. write the balanced formula unit equation for this r
    5·1 answer
  • For the balanced equation shown below, how many moles of O2 will react with 0.3020 moles of CO2?
    11·2 answers
  • What is The molarity of 1.5N solution of aluminum carbonate
    15·1 answer
  • What is the definition of periodic trend
    11·1 answer
  • How to titrate cocacola because of its dark colour
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!