<span>the theoretical yield which is the expected yield and the actual yield obtained are not always the same. therefore percent yield is calculated which shows how much of the percentage of the theoretical yield is actually obtained.
the theoretical yield = 56.0 g
actual yield = 47.0 g
percent yield = actual yield / theoretical yield x 100 %
percent yield = 47.0 / 56.0 x 100% = 83.9 %
percent yield = 83.9 %</span>
Answer:

Explanation:
Hello,
In this case, as the copper's heat loss is gained by the water, the following energetic relationship is:

Therefore the equilibrium temperature shows up as:

Thus, by knowing that water's heat capacity is 4.18J/g°C, one obtains:

Best regards.
Answer:
731.25 g
Explanation:
The question asks us to calculate the mass of 12.5 moles of NaCl. The individual relative atomic masses of the elements were supplied. We must first obtain the molar mass of sodium chloride as follows;
Molar mass of sodium chloride= 23.0 + 35.5 = 58.5 gmol-1
From the formula;
Number of moles (n) = mass /molar mass
Number of moles of sodium chloride= 12.5 moles
Mass of sodium = The unknown
Molar mass of sodium chloride= 58.5gmol-1
Mass of sodium chloride= number of moles × molar mass
Mass of sodium chloride= 12.5 × 58.5
Mass of sodium chloride= 731.25 g
An aqueous solution in a 55 gallon (208 l drum), characterized by minimal buffering capacity, received 4kg of phenol and 1.5 kg of sodium phenate. What is the ph of the solution. The pka of phenol = 9.98. Mw of phenol and sodium phenate are 94 g/mol and 116 g/mol, respectively.
Volume of solution = 55 gallons = 208.2 L [ 1 gallon = 3.78 L]
moles of phenol = mass / molar mass = 4000 g / 94 = 42.55 moles
moles of sodium phenate = mass / molar mass = 1500 / 116 = 12.93 moles
pKa of phenol = 9.98
We know that the pH of buffer is calculated using Hendersen Hassalbalch's equation
pH = pKa + log [salt] / [acid]
volume is same for both the sodium phenate and phenol has we can directly take the moles of each in the formula
pH = 9.98 + log [12.93 / 42.55] = 9.46