1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Klio2033 [76]
3 years ago
12

D.The rear wheels of tractors are wider.​

Physics
1 answer:
Soloha48 [4]3 years ago
7 0

Answer:

they are wider to enhance stability of the tractor

You might be interested in
What element from the periodic table rhymes with extreme
jonny [76]
Halite or sulfur or gold or silver
8 0
4 years ago
Una barra de plata de 335.2 g con una temperatura de 100 ºC se introduce un calorímetro de aluminio de 60 g de masa que contiene
sdas [7]

Respuesta:

0,0560 cal / gºC.

Explicación:

Cantidad de calor; (Q)

Q = mcΔt; Δt = t2 - t1

m = masa, c = capacidad calorífica específica; Δt = cambio de temperatura

c de agua = 1 cal / gºC

c de aluminio = 0,22 cal / gºC

QTotal = Q de agua + Q de aluminio

Q de agua = 450 * 1 * (26 - 23) = 1350 cal

Q de aluminio = 60 * 0.22 * (26 - 23) = 39.6 cal

QTotal = 1350 + 39,6 = 1389,6 cal

Calor perdido = calor ganado

QTotal = calor perdido

- 1389,6 = 335,2 * c * (26 - 100)

-1389,6 = −24804,8 * c

c = 1389,6 / 24804,8

c = 0,056021 cal / gºC.

Capacidad calorífica específica de la plata = 0,0560 cal / gºC.

8 0
3 years ago
True or False A scientific law only states that an event occurs?
Kamila [148]

True

A scientific law only states that an event occurs.

Hope this helps!

3 0
4 years ago
Calculate the de Broglie wavelength of an electron accelerated from rest through a potential difference of (a) 100 V, (b) 1.0 kV
forsale [732]

Answer:

(a) \lambda=1.227\ A

(b) \lambda=0.388\ A

(c) \lambda=0.038\ A

Explanation:

Given that,

(a) An electron accelerated from rest through a potential difference of 100 V. The De Broglie wavelength in terms of potential difference is given by :

\lambda=\dfrac{h}{\sqrt{2meV} }

Where

m and e are the mass of and charge on an electron

On solving,

\lambda=\dfrac{12.27}{\sqrt{V} }\ A

V = 100 V

\lambda=\dfrac{12.27}{\sqrt{100} }\ A

\lambda=1.227\ A

(b) V = 1 kV = 1000 V

\lambda=\dfrac{12.27}{\sqrt{V} }\ A

\lambda=\dfrac{12.27}{\sqrt{1000} }\ A

\lambda=0.388\ A

(c) If V=100\ kV=10^5\ V

\lambda=\dfrac{12.27}{\sqrt{10^5} }\ A

\lambda=0.038\ A

Hence, this is the required solution.

7 0
3 years ago
A light source of wavelength λ illuminates a metal with a work function (a.k.a., binding energy) of BE=2.00 eV and ejects electr
slega [8]
<h2>Answer: 1.011 eV</h2>

Explanation:

The described situation is the photoelectric effect, which consists of the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.  

If we consider the light as a stream of photons and each of them has energy, this energy is able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a <u>kinetic energy. </u>

This is what Einstein proposed:  

Light behaves like a stream of particles called photons with an energy  E:

E=h.f (1)  

So, the energy E of the incident photon must be equal to the sum of the Work function \Phi of the metal and the kinetic energy K of the photoelectron:  

E=\Phi+K (2)  

Where \Phi is the <u>minimum amount of energy required to induce the photoemission of electrons from the surface of a metal, and </u><u>its value depends on the metal.  </u>

In this case \Phi=2eV  and K_{1}=4eV

So, for the first light source of wavelength \lambda_{1}, and  applying equation (2) we have:

E_{1}=2eV+4eV   (3)  

E_{1}=6eV   (4)  

Now, substituting (1) in (4):  

h.f=6eV (5)  

Where:  

h=4.136(10)^{-15}eV.s is the Planck constant

f is the frequency  

Now, the <u>frequency has an inverse relation with the wavelength </u>

\lambda_{1}:  

f=\frac{c}{\lambda_{1}} (6)  

Where c=3(10)^{8}m/s is the speed of light in vacuum  

Substituting (6) in (5):  

\frac{hc}{\lambda_{1}}=6eV (7)  

Then finding \lambda_{1}:  

\lambda_{1}=\frac{hc}{6eV } (8)  

\lambda_{1}=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{6eV}  

We obtain the wavelength of the first light suorce \lambda_{1}:  

\lambda_{1}=2.06(10)^{-7}m   (9)

Now, we are told the second light source \lambda_{2}  has the double the wavelength of the first:

\lambda_{2}=2\lambda_{1}=(2)(2.06(10)^{-7}m)   (10)

Then: \lambda_{2}=4.12(10)^{-7}m   (11)

Knowing this value we can find E_{2}:

E_{2}=\frac{hc}{\lambda_{2}}   (12)

E_{2}=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{4.12(10)^{-7}m}   (12)

E_{2}=3.011eV   (13)

Knowing the value of E_{2} and \lambda_{2}, and knowing we are working with the same work function, we can finally find the maximum kinetic energy K_{2} for this wavelength:

E_{2}=\Phi+K_{2} (14)  

K_{2}=E_{2}-\Phi (15)  

K_{2}=3.011eV-2eV  

K_{2}=1.011 eV  This is the maximum kinetic energy for the second light source

7 0
3 years ago
Other questions:
  • An electric field can be modeled as lines of force radiating out into space.
    13·1 answer
  • A solenoid 0.425 m long has 950 turns of wire. What is the magnetic field in the center of the solenoid when it carries a curren
    14·1 answer
  • A passenger jet flies from one airport to another 1293 miles away in 2.1hours . Find average speed
    11·1 answer
  • Which of the following is the best evidence that Earth's continents were once in vastly different positions than they are today?
    11·2 answers
  • Lightning occurs when there is a flow of electric charge (principally electrons) between the ground and a thundercloud. The maxi
    15·1 answer
  • In an element’s square on the periodic table, the number with the greatest numerical value represents the
    7·2 answers
  • Which of the following has the greatest momentum?
    6·1 answer
  • Definition MRI<br> types MRI <br>explain MRI​
    5·1 answer
  • A woman gets burned at the beach after a hot, sunny day. What kind of
    13·2 answers
  • HELP ASAP
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!