Answer:
6,528 divided by 8 is 816
6528/8 = 816
6348 divide by 9 is 705.44..... ♾️
Since g(6)=6, and both functions are continuous, we have:
![\lim_{x \to 6} [3f(x)+f(x)g(x)] = 45\\\\\lim_{x \to 6} [3f(x)+6f(x)] = 45\\\\lim_{x \to 6} [9f(x)] = 45\\\\9\cdot lim_{x \to 6} f(x) = 45\\\\lim_{x \to 6} f(x)=5](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%206%7D%20%5B3f%28x%29%2Bf%28x%29g%28x%29%5D%20%3D%2045%5C%5C%5C%5C%5Clim_%7Bx%20%5Cto%206%7D%20%5B3f%28x%29%2B6f%28x%29%5D%20%3D%2045%5C%5C%5C%5Clim_%7Bx%20%5Cto%206%7D%20%5B9f%28x%29%5D%20%3D%2045%5C%5C%5C%5C9%5Ccdot%20lim_%7Bx%20%5Cto%206%7D%20f%28x%29%20%3D%2045%5C%5C%5C%5Clim_%7Bx%20%5Cto%206%7D%20f%28x%29%3D5)
if a function is continuous at a point c, then

,
that is, in a c ∈ a continuous interval, f(c) and the limit of f as x approaches c are the same.
Thus, since

, f(6) = 5
Answer: 5
Answer:
f(g(x)) = -1
Step-by-step explanation:

Y = x -4 I believe would be the answer.
The Taylor series is defined by:

Let a = 0.
Then its just a matter of finding derivatives and determining how many terms is needed for the series.
Derivatives can be found using product rule:

Do this successively to n = 6.

Plug in x=0 and sub into taylor series:

If more terms are needed simply continue the recursive derivative formula and add to taylor series.