Highest energy photon absorbed: 
Explanation:
An atom is said to be (positively) ionised when it absorbs a photon, and as a consequence, an electron becomes energetic enough to escape the atom, leaving an excess of positive charge behind.
In order for the electron to escape, the energy of the absorbed photon must be exactly equal to the (negative) energy of the level in which the electron lies.
For an hydrogen atom, the energy levels are given by

where this energy is measured in electronvolts, and n is the number of the energy level.
Since the energy is negative, this means that the electron which requires most energy is the one lying in the ground state (n=1). Therefore, for an electron in the ground state, the most energy that can be absorbed from the incoming photon is

Converting into Joules, this is equal to

Learn more about hydrogen atom:
brainly.com/question/2757829
#LearnwithBrainly
Answer:
F = 3.6 kN, direction is 9.6º to the North - East
Explanation:
The force is a vector, so one method to find the solution is to work with the components of the vector as scalars and then construct the resulting vector.
Let's use trigonometry to find the component of the forces, let's use a reference frame where the x-axis coincides with the East and the y-axis coincides with the North.
Wind
X axis
F₁ = 2.50 kN
Tide
cos 30 = F₂ₓ / F₂
sin 30 = F_{2y} / F₂
F₂ₓ = F₂ cos 30
F_{2y} = F₂ sin 30
F₂ₓ = 1.20cos 30 = 1.039 kN
F_{2y} = 1.20 sin 30 = 0.600 kN
the resultant force is
X axis
Fₓ = F₁ₓ + F₂ₓ
Fₓ = 2.50 +1.039
Fₓ = 3,539 kN
F_y = F_{2y}
F_y = 0.600
to find the vector we use the Pythagorean theorem
F = 
F = 
F = 3,589 kN
the address is
tan θ = F_y / Fₓ
θ = tan⁻¹
θ = tan⁻¹
0.6 / 3.539
θ = 9.6º
the resultant force to two significant figures is
F = 3.6 kN
the direction is 9.6º to the North - East
Answer:
56.86153 N
Explanation:
t =Time taken
F = Force
Power

Work done

The magnitude of the force that is exerted on the handle is 56.86153 N