<span>In this particular case, where car is moving through curvature, so it is moving in circular motion, force acting on car is centripetal force which holds car not to fly out. Centripetal force is always pointed in the middle of circle. Here frictional force has role of centripetal force. If frictional force is to weak, car would fly out of curvutare.</span>
Answer:
Rate at which current flows is measured in amperes
Explanation:
The rate of flow of electrons constitutes the current. The electrons flow from lower electric potential to higher electric potential. When there is no potential difference then no electron will flow. The direction of the current and the electron are in opposite direction.
The direction of electron from the negative terminal to the positive terminal. The direction of current is from the positive terminal to the negative terminal.The current is measured in ampere.
The expression for current and the charge is as;
Here, q is the charge, t is the time taken and I is the current.
According to the given problem, Jodi made a list about electric current to help her study for a test. He described that electrons move from areas of low to high electric potential, voltage causes current to flow and movement of electrons is continuous in a current.
But he did error. It should be "rate at which charges flow" instead of rate at which current flow.
Therefore, the option (4) is correct.
Answer:

Explanation:
The buoyant force F is equal to the weight of the displaced fluid. The weight of the displaced fluid is
, where
is the mass of the displaced fluid. The mass of the displaced fluid is
, where
is the density of the fluid and
is the displaced volume, which is equal to the submerged volume of the cilinder
.
Putting all together we have:

Time taken by proton to complete one complete circular orbit= 7.28 x 10⁻⁸ s
Explanation:
For proton, the centripetal force required for circular motion is provided by the magnetic force,
so Fm= Fc
q v B = m v²/r
m= mass of charged particle
v= velocity
B =magnetic field
q= charge
r= radius of circular path
v= q B r/m
now v= r ω
ω= angular velocity
ω r = q B r /m
ω=q B /m
now ω= 2π/T where T =time period
so 2π/T=q B/m
T= 2 πm/q B
T= 2π (1.67 x 10⁻²⁷)/ [( 1.6 x 10⁻¹⁹)* (0.9)]
T= 7.28 x 10⁻⁸ s
The answer is c. the degree of wetness of the paper towels.