This assumes that the wave has velocity c (is light).
Question: Predicting the shape of a molecule is relatively straight forward. A molecule's shape will always be determined by the number of electron pairs around the central atom. The number of electron pair corresponds to the number of atoms that are bound to the central atom of the molecule. For example, water contains two hydrogen atom bound to one atom of oxygen, giving the molecule a linear geometry.
Suppose that the model presented by student 1 is correct. Based on the information provided, what would be the bond angle in a molecule of perchlorate ion.
Answer: Suppose that the model presented by student 1 is correct The (perchlorate ion) will be a tetrahedral shape, O-Cl-O bond angle 109.5 due to four groups of bonding electrons and no lone pairs of electrons.
Explanation:
It is given that,
Mass of golf club, m₁ = 210 g = 0.21 kg
Initial velocity of golf club, u₁ = 56 m/s
Mass of another golf ball which is at rest, m₂ = 46 g = 0.046 kg
After the collision, the club head travels (in the same direction) at 42 m/s. We need to find the speed of the golf ball just after impact. Let it is v.
Initial momentum of golf ball, 
After the collision, final momentum 
Using the conservation of momentum as :


v = 63.91 m/s
So, the speed of the golf ball just after impact is 63.91 m/s. Hence, this is the required solution.
Answer:
6.9066 × 10⁻⁵ m
Explanation:
For constructive interference, the expression is:
Where, m = 1, 2, .....
d is the distance between the slits.
The formula can be written as:
....1
The location of the bright fringe is determined by :
Where, L is the distance between the slit and the screen.
For small angle ,
So,
Formula becomes:
Using 1, we get:

Thus, the distance between the central maximum is 3.00 cm
First bright fringe , m = 1 occur at 3.00 / 2 = 1.50 cm
Since,
1 cm = 0.01 m
y = 0.0150 m
Given L = 2.00 m
λ = 518 nm
Since, 1 nm = 10⁻⁹ m
So,
λ = 518 × 10⁻⁹ m
Applying the formula as:

<u>⇒ d, distance between the slits = 6.9066 × 10⁻⁵ m</u>