Radiation because it radiates the heat in there body therefore making them hot.
C) Oxygen and hydrogen share electrons with each other.
Answer: elastic potential energy = 20.27 J
Explanation:
Given that the
Mass M = 0.470 kg
Height h = 4.40 m
Spring constant K = 85 N/m
The maximum elastic potential will be equal to the maximum kinetic energy experienced by the block.
But according to conservative of energy, the maximum kinetic energy is equal to the maximum potential energy experienced by the block of mass M.
That is
K .E = P.E = mgh
Where g = 9.8m/s^2
Substitutes all the parameters into the formula
K.E = 0.470 × 9.8 × 4.4
K.E = 20.27 J
Where K.E = maximum elastic potential energy stored in the spring during the motion of the blocks after the collision which is 20.27J.
Answer:
T2=336K
Explanation:
Clausius-Clapeyron equation is used to determine the vapour pressure at different temperatures:
where:
In(P2/P1) = ΔvapH/R(1/T1 - 1/T2)
p1 and p2 are the vapour pressures at temperatures
T1 and T2
ΔvapH = the enthalpy of vaporization of the liquid
R = the Universal Gas Constant
p1=p1, T1=307K
p2=3.50p1; T2=?
ΔvapH=37.51kJ/mol=37510J/mol
R=8.314J.K^-1moL^-1
In(3.50P1/P1)= (37510J/mol)/(8.314J.K^-1)*(1/307 - 1/T2)
P1 and P1 cancelled out:
In(3.50)=4511.667(T2 - 307/307T2)
1.253=14.696(T2 - 307/T2)
1.253=(14.696T2) - (14.696*307)/T2
1.253T2=14.696T2 - 4511.672
Therefore,
4511.672=14.696T2 - 1.253T2
4511.672=13.443T2
So therefore, T2=4511.672/13.443=335.61
Approximately, T2=336K