Gravity, friction, and air resistance are some examples.
Answer:
Explanation:
Given
Both cars mass is m
and solving problem in Vertical and horizontal direction
considering + y and +x to be positive and u be the final velocity of system
Conserving Momentum in Vertical direction

------1
Conserving momentum in x direction
-----2
squaring and adding 1 &2




To solve this, we use the Wien's Displacement Law as shown in the attached picture. First, convert the temperature to Kelvin.
C to F:
C = (F - 32)*5/9
C = (325 - 32)*5/9 = 162.78 °C
C to K:
K = C + 273
K = 162.78 + 273 = 435.78 K
λmax = 2898/435.78 =
<em>6</em><em>.65 μm</em>
Answer:
g=GM/R^2
Universal Gravutation Constant:
f=GM×m/R^2
Force can be also expressed as
f=m×g
so,
mg=GMxm/R^2
The m gets cancelled so
g=GM/R^2