The by-product of the chlorination of an alkane is <u>HCl</u>
Explanation:
- Chlorination is the process of adding chlorine to drinking water to disinfect it and kill germs. Different processes can be used to achieve safe levels of chlorine in drinking water.
- Chlorination of alkane gives a mixture of different products.
- When consider mechanism of alkanes chlorination, free radicals are formed during the reaction to keep the continuous reaction.
- Different alkyl chloride compounds, extended carbon chains compounds and HCl are formed as products in product mixture.
- Chlorination byproducts, their toxicodynamics and removal from drinking water.
- Halogenated trihalomethanes (THMs) and haloacetic acids (HAAs) are two major classes of disinfection byproducts (DBPs) commonly found in waters disinfected with chlorine
- Chlorine is available as compressed elemental gas, sodium hypochlorite solution (NaOCl) or solid calcium hypochlorite (Ca(OCl)2
It's just graphing. puck acceleration is the x axis and swing length is the y axis
Answer:
For neutral atoms, the number of valence electrons is equal to the atom's main group number. The main group number for an element can be found from its column on the periodic table. For example, carbon is in group 4 and has 4 valence electrons. Oxygen is in group 6 and has 6 valence electrons.
Explanation:
hope this help
Answer:
Molecular formula => C₃H₈O₃
Explanation:
From the question given above, the following data were obtained:
Carbon (C) = 39.12%
Hydrogen (H) = 8.75%
Oxygen (O) = 51.12%
Molar mass of compound = 92.09 g/mol
Molecular formula =?
Next, we shall determine the empirical formula of the compound. This can be obtained as follow:
C = 39.12%
H = 8.75%
O = 51.12%
Divide by their molar mass
C = 39.12 / 12 = 3.26
H = 8.75 / 1 = 8.75
O = 51.12 / 16 = 3.195
Divide by the smallest
C = 3.26 / 3.195 = 1
H = 8.75 / 3.195 = 2.7
O = 3.195 / 3.195 = 1
Thus, the empirical formula is CH₂.₇O
Finally, we shall determine the molecular formula of the compound. This can be obtained as follow:
Empirical formula = CH₂.₇O
Molar mass of compound = 92.09 g/mol
Molecular formula =?
Molecular formula = Empirical formula × n
Molecular formula = [CH₂.₇O]ₙ
92.09 = [12 + (2.7×1) + 16] × n
92.09 = 30.7n
Divide both side by 30.7
n = 92.09 / 30.7
n = 3
Molecular formula = [CH₂.₇O]ₙ
Molecular formula = [CH₂.₇O]₃
Molecular formula = C₃H₈O₃
One of the many awe-inspiring things about algae, Professor Greene explains, is that they can grow between ten and 100 times faster than land plants. In view of this speedy growth rate – combined with the fact they can thrive virtually anywhere in the right conditions – growing marine microalgae could provide a variety of solutions to some of the world’s most pressing problems.
Take, global warming. Algae sequesters CO2, as we have learned, but owing to the fact they grow faster than land plants, can cover wider areas and can be utilised in bioreactors, they can actually absorb CO2 more effectively than land plants. AI company Hypergiant Industries, for instance, say their algae bioreactor was 400 times more efficient at taking in CO2 than trees.
And it’s not just their nutritional credentials which could solve humanity’s looming food crisis, but how they are produced. Marine microalgae grow in seawater, which means they do not rely on arable land or freshwater, both of which are in limited supply. Professor Greene believes the use of these organisms could therefore release almost three million km2 of cropland for reforestation, and also conserve one fifth of global freshwater