Answer: The original temperature was

Explanation:
Let's put the information in mathematical form:





If we consider the helium as an ideal gas, we can use the Ideal Gas Law:

were <em>R</em> is the gas constant. And <em>n</em> is the number of moles (which we don't know yet)
From this, taking
, we have:
⇒
Now:
⇒
As close as I can read it, it appears to be
1/12 gram/second
(0.08333... gm/sec)
Answer:
D. Meters/Seconds
Explanation:
The time period of a wave is measured in seconds.
A typical wave involves both time and distance. Consider a sound wave, which is basically a periodic modulation of the local air pressure. We "hear" the sound because our ears respond to the variations of pressure.
The most common metric of a sound wave is frequency. This is the rate at which the change in pressure occurs, and is measured in cycles per second, formally known as "hertz". The period is the inverse of frequency andl has the units of seconds per cycle, commonly stated simply as seconds.
Answer:
Water gains energy during evaporation and releases it during condensation in the atmosphere
Explanation:
In the water cycle, heat energy is gained or lost by water as it undergoes various processes in the cycle.
In evaporation, water molecules gains energy because the molecules of water vibrate faster and become more energetic. Hence they are able to escape into the atmosphere from the surface of the liquid.
In condensation, the molecules of gaseous water looses energy and becomes liquid.
Hence, water gains energy during evaporation and releases it during condensation in the atmosphere.