Answer: The second force applied to the doorknob
Explanation:
The formulae for torque is simple the product of the applied force and the perpendicular distance.
The greater the perpendicular force, the greater the torque assuming a constant value of force.
Applying the force at the doorknob gives for a greater distance between the force and the turning point compared to applying the force at the midpoint of the door ( which is at a shorter distance)
The answer is A. <span>Some work input is used to overcome friction. </span>
Answer:
∆p=(m2v)kg.m/s
Explanation:
∆p=mv where v=2v. hence ∆p=m2v
Choice 1
The Sun's radiation and solar wind cause the dust and gas around the comet (coma) to stretch the coma. The solar wind electromagnetically blows the ions in the coma away.
Answer:
1) p₀ = 45000 N / s
, p₀ '= 1800
, b) I = -45000 N s
, I = 1800 Ns
Explanation:
Impulse equals the change in momentum
I = Δp
1) the initial moment of the car
p₀ = M v
p₀ = 1500 30
p₀ = 45000 N / s
the change at the moment is
Δp = 45000
because the end the car is stopped
moment of the person
P₀ ’= m v
p₀ '= 60 30
p₀ '= 1800
D₀ '= 1800
2) of the momentum change impulse ratio
car
I = Δp
I = -45000 N s
person
I = Δpo '
I = 1800 Ns
3) the object that give the momentum to stop the wall motoring
The person is stopped by the impulse given by the car
a) This area is the one that absorbs most of the vehicle impulse
be) If using a safety painter, the time during which the greater force will act, therefore the lessons decrease
c) The air bag helps reduction in the speed of the person relatively quickly.