calculate moles of both reagents given and the moles of FeS that each of them would form if they were in excess
moles = mass / molar mass
moles Fe = 7.62 g / 55.85 g/mol
= 0.1364 moles
1 mole Fe produces 1 mole FeS
Therefore 7.62 g Fe can form 0.1364 moles FeS
moles S = 8.67 g / 32.07 g/mol
= 0.2703 moles S
1 mole S can from 1 moles FeS
So 8.67 g S can produce 0.2703 moles FeS
The limiting reagent is the one that produces the least product. So Fe is limiting.
The maximum amount of FeS possible is from complete reaction of all the limiting reagent.
We have already determined that the Fe can form up to 0.1364 moles of FeS, so this is max amount of FeS you can get.
Convert to mass
hope this helps :)
Answer:
Calculate the molar concentration of the NaOH solution that you prepared Number of moles of KHP = Number of moles NaOH = 2.476 x 10 -3 moles Number of moles NaOH = Mb x Vb Mb = 2.476 x 10 -3 moles / 0.0250 L (equivalence point) = 0.0990 M 3
Explanation:
Answer:
W = -120 KJ
Explanation:
Since the piston–cylinder assembly undergoes an isothermal process, then the temperature is constant.
Thus; T1 = T2 = 400K
change in entropy; ΔS = −0.3 kJ/K
Formula for change in entropy is written as;
ΔS = Q/T
Where Q is amount of heat transferred.
Thus;
Q = ΔS × T
Q = -0.3 × 400
Q = -120 KJ
From the first law of thermodynamics, we can find the workdone from;
Q = ΔU + W
Where;
ΔU is Change in the internal energy
W = Work done
Now, since it's an ideal gas model, the change in internal energy is expressed as;
ΔU = m•C_v•ΔT
Where;
m is mass
C_v is heat capacity at constant volume
ΔT is change in temperature
Now, since it's an isothermal process where temperature is constant, then;
ΔT = T2 - T1 = 0
Thus;
ΔU = m•C_v•ΔT = 0
ΔU = 0
From earlier;
Q = ΔU + W
Thus;
-120 = 0+ W
W = -120 KJ
The intermolecular forces that are responsible for the dissolution of Ethylene glycol in water is hydrogen bonding dipole-dipole forces and dispersion forces.
Both ethylene glycol and water contains the pair of hydrogen and oxygen.
The hydrogen of one atom create a bond with the oxygen of other atom this results in the formation of intra molecular hydrogen bonding.
The electron are non uniformly distributed over the molecule or the atom which results in the fluctuation of the electron density in the atom.
So it creates are dispersion forces which is present all over the molecule this forces helps to increase the strength of the bond formed between the ethylene glycol and water because they have large masses.
Both ethylene glycol and water are polar molecules because of being polar they form dipole and the dipole of both the molecules interact with each other in order to form bond between the atoms which eventually results in the formation dissolution of ethylene glycol in water.
To know more about intermolecular forces, visit,
brainly.com/question/2193457
#SPJ4
Compete Question - which intermolecular forces are responsible for the dissolution of ethylene glycol? select all that apply hydrogen bonding, dipole-dipole, dispersion and Ion dipole interaction.