<span>You are given a QL = -26 μC charge that is placed on the x-axis at x = - 0.2 m and a QR = 26 μC charge that is placed at x = +0.2 m. The answers are:
The x-component of the electric field at x = 0 m and y = 0.2 m is 3.
The y-component of the electric field at x = 0 m and y = 0.2 m is 2.
</span>
Here,
height at failure, h1 = 525 m,
upward acceleration, a = 2.25 m/s^2,
velocity = v m/s,
<span>
SO, </span>
<span>
v^2 = 2*a*h = 2*2.25*525 = 2362.5 </span>
Now, acceleration, g = 9.8 m/s^2,
<span>
SO, </span>
<span>
heigt, h1 = v^2/2g = 2362.5 / 2*9.8 = 120.54 meters </span>
Hence,
<span>
a) </span>
Total height = 525+120.54 = 645.54 meters
b)
<span>time, for h1, t = v/g = sqrt(2362.5)/9.8 = 4.96 sec
---------------------------------
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!</span>
D. convergent plate boundary involving an oceanic plate
Answer:
The correct answer is B
Explanation:
Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity
Φ
= ∫ E. dA =
/ ε₀
For this case we create a Gaussian surface that is a sphere. We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product
∫ E dA =
/ ε₀
The area of a sphere is
A = 4π r²
E 4π r² =
/ ε₀
E = (1 /4πε₀
) q / r²
Having the solution of the problem let's analyze the points:
A ) r = 3R / 4 = 0.75 R.
In this case there is no charge inside the Gaussian surface therefore the electric field is zero
E = 0
B) r = 5R / 4 = 1.25R
In this case the entire charge is inside the Gaussian surface, the field is
E = (1 /4πε₀
) Q / (1.25R)²
E = (1 /4πε₀
) Q / R2 1 / 1.56²
E₀ = (1 /4π ε₀
) Q / R²
= Eo /1.56
²
= 0.41 Eo
C) r = 2R
All charge inside is inside the Gaussian surface
=(1 /4π ε₀
) Q 1/(2R)²
= (1 /4π ε₀
) q/R² 1/4
= Eo 1/4
= 0.25 Eo
D) False the field changes with distance
The correct answer is B
Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."

Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as

Where
and the position vector

using the determinant method to expand the cross product in order to determine the torque we have
![\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2%26-3%262%5C%5C%20F_%7Bx%7D%20%267%26-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C)
by expanding we arrive at

since we have determine the vector value of the toque, we now compare with the torque value given in the question

if we directly compare the j coordinate we have
