Mechanics is the study of motion and force on physical objects and their surroundings
Answer:
<em>The speed of the plane after it decelerates is 50 m/s</em>
Explanation:
<u>Motion with Constant Acceleration</u>
When an object gains or losses velocity in time, it acquires acceleration. If this value is constant, we can calculate the final velocity (or speed in scalar terms) as:

Where vf is the final speed, vo is the initial speed, a is the constant acceleration, and t is the time the acceleration is acting.
The plane is originally traveling at vo=80 m/s and it slows down at a constant rate of
during t=120 seconds. Note we have added the negative sign to the acceleration because the plane is slowing down, i.e., the acceleration is against the speed.
Thus, the final speed is:



The speed of the plane after it decelerates is 50 m/s
Answer:
See explanations below
Explanation:
Power = Workdone/Time
Power of washer = 450watts
Time used to clean the clothes = 1hour = 3600secs
Energy used to clean a load of clothes in 1 hour of
washing = 450/3600
Energy used to clean a load of clothes in 1 hour of
washing = 0.125Joules
For drying;
Energy = 3000/1.5*3600
Energy = 3000/5400
Energy = 0.556Joules
Hence the energy in washing id 0.556Joules
Answer:
Friction force always acts tangent to the surface at points of contact. Friction force acts opposite to the direction of motion. There are 2 types of friction: Static friction: If the two surfaces in contact do not move relative to each other, one has static friction.
Answer:
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Explanation:
We can answer this question by using Kepler's second law of planetary motion, which states that:
"A line connecting the center of the Sun with the center of each planet sweeps out equal areas in equal intervals of time"
This means that when a planet is further away from the Sun, it will move slower (because the line is longer, so it must move slower), while when the planet is closer to the Sun, it will move faster (because the line is shorter, so it must move faster).
In the text of this problem, it is written that the planet moves at 31 km/s when is close to the star and 35 km/s when it is farthest: this is in disagreement with what we said above, therefore the correct option is
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.