We actually cant, really. Black Holes are really very powerful and don't just happen in some random place in the cosmos. We have got shots of Black holes that you cannot even see, but all the other big black holes that look like something straight of a sci-fi movie that look real, are really just photo- shopped. good question. Hope This Helped.
As current increases, the wires heat which can cause a fuse to blow or a circuit breaker to trip. As additional branches are added to a parallel circuit, the overall resistance of the circuit decreases. A decrease in resistance creates an increase in current.
<h3>What is a Simple circuit ?</h3>
A battery (or other energy source), a light bulb (or other energy-consuming device), and conducting wires that connect the two terminals of the battery to the two ends of the light bulb make up a simple electric circuit.
- Three elements make up an electric circuit: a power source, such as a battery or the mains. a lightbulb-like energy receiver an energy conduit, such as a wire
Learn more about Simple circuit here:
brainly.com/question/530349
#SPJ4
Answer:
T₂ = 123.9 N, θ = 66.2º
Explanation:
To solve this exercise we use the law of equilibrium, since the diaphragm does not appear, let's use the adjoint to see the forces in the system.
The tension T1 = 100 N, we create a reference frame centered on the pole
X axis
T₁ₓ -
= 0
T_{2x}= T₁ₓ
Y axis y
T_{1y} + T_{2y} - 200N = 0
T_{2y} = 200 -T_{1y}
let's use trigonometry to find the component of the stresses
sin 60 = T_{1y} / T₁
cos 60 = t₁ₓ / T₁
T_{1y} = T₁ sin 60
T1x = T₁ cos 60
T_{1y}y = 100 sin 60 = 86.6 N
T₁ₓ = 100 cos 60 = 50 N
for voltage 2 it is done in the same way
T_{2y} = T₂ sin θ
T₂ₓ = T₂ cos θ
we substitute
T₂ sin θ= 200 - 86.6 = 113.4
T₂ cos θ = 50 (1)
to solve the system we divide the two equations
tan θ = 113.4 / 50
θ = tan⁻¹ 2,268
θ = 66.2º
we caption in equation 1
T₂ cos 66.2 = 50
T₂ = 50 / cos 66.2
T₂ = 123.9 N
A) 0.189 N
The weight of the person on the asteroid is equal to the gravitational force exerted by the asteroid on the person, at a location on the surface of the asteroid:

where
G is the gravitational constant
8.7×10^13 kg is the mass of the asteroid
m = 130 kg is the mass of the man
R = 2.0 km = 2000 m is the radius of the asteroid
Substituting into the equation, we find

B) 2.41 m/s
In order to orbit just above the surface of the asteroid (r=R), the centripetal force that keeps the astronaut in orbit must be equal to the gravitational force acting on the astronaut:

where
v is the speed of the astronaut
Solving the formula for v, we find the minimum speed at which the astronaut should launch himself and then orbit the asteroid just above the surface:

Answer: 12.12 m
Explanation:
We have the following data:
is the speed of the water wave
is the frequency of the water wave
Now, the speed of a wave is given by the following equation:
Where
is the wavelength.
Isolating
:


Finally:
This is the water wave wavelength