K.E. = 1/2 mv²
K.E. is directly proportional to v^2
So, when K.E. increase by 2, K.E. increase by root. 2
v' = 1.41v
original v value was 3 so, final would be:
v' = 1.41*3 = 4.23
After round-off to it's tenth value, it will be:
v' = 4.2
So, option B is your answer!
Hope this helps!
<span>We can answer this using
the rotational version of the kinematic equations:</span><span>
θ = θ₀ + ω₀<span>t + ½αt²
-----> 1</span></span>
ω² = ω₀² + 2αθ
-----> 2
Where:
θ = final angular
displacement = 70.4 rad
θ₀ = initial
angular displacement = 0
ω₀ = initial angular
speed
ω = final angular speed
t = time = 3.80 s
α = angular acceleration
= -5.20 rad/s^2
Substituting the values
into equation 1:<span>
70.4 = 0 + ω₀(3.80)
+ ½(-5.20)(3.80)² </span><span>
ω₀ = (70.4
+ 37.544) / 3.80 </span><span>
ω₀ = 28.406
rad/s </span><span>
Using equation 2:
ω² = (28.406)² + 2(-5.2)70.4
ω = 8.65 rad/s
</span>
Answer:
Geothermal
Explanation:
Geothermal is obtained from the heat from the ground which makes it friendly
Answer:
Increase the charge of one particle by a factor of 16
Explanation:
Answer:
1. Current flows through the battery, aluminum foil, and paper clips, and into the wire coil, creating an electromagnet. One face of the coil becomes a north pole; the other a south pole. The permanent magnet attracts its opposite pole on the coil and repels its like pole, causing the coil to spin.
- Quoted from Google
2. Electrical engineers say that, in an electrical circuit, electricity flows one direction: out of the positive terminal of a battery and back into the negative terminal. Electronic technicians say that electricity flows the other direction: out of the negative terminal of a battery and back into the positive terminal.
- Quoted from Google