Answer:
Ionic bonds hold charged particles in solid NaCl together, such that they are unable to move or conduct electricity.
Explanation:
Consider an electric current that flows through a conductor: charge moves in a uniform direction from one end of the conductor towards the other.
Thus, there are two conditions for a substance to conduct electricity:
- The substance shall contain charged particles, and
- These charged particles shall be free to move across the substance.
A conductor of electricity shall meet both requirements.
Now, consider the structure of solid NaCl
. NaCl is an ionic compound. It contains an ocean of oppositely charged ions:
- Positive
ions, and - Negative
ions.
Ions carry charge. Thus, solid NaCl contains charged particles and satisfies the first condition.
Inside solid NaCl
, electrostatic attractions ("ionic bonds") between the oppositely charged ions hold these ions in rigid ionic lattices. These ions are unable to move relative to each other. As a result, they cannot flow through the solid to conduct electricity. Under solid state, NaCl is unable to satisfy the second condition.
As a side note, melting NaCl into a liquid breaks the ionic bonds and free the ions from the lattice. Liquid NaCl is a conductor of electricity.
Answer: It's equal to 10^(-2.3), or 0.00501 M, or 5.01 * 10^-3 moles/Liter
Explanation:
Well, pH = - log[H+]
Or, in words, pH is equal to -1 multiplied by the logarithm (base 10) of the hydrogen ion concentration.
So you have 2.3 = -log[H+]. We want to isolate the H+, so let's start simplifying the right hand side of the equation. First, we multiply both sides by -1.
-2.3=log[H+]
Now, the definition of a logarithm says that if the log (base 10) of [H+] is -2.3, then 10 raised to the -2.3 power is [H+]
So on each side of the equation, we raise 10 to the power of that side of the equation.
10^(-2.3) = 10^(log[H+])
and because 10^log cancels out...
10^(-2.3) = [H+]
Now we've solved for [H+], the hydrogen ion concentration!
Answer:
b
Explanation:
The reaction that is not a displacement reaction from all the options is 
In a displacement reaction, a part of one of the reactants is replaced by another reactant. In single displacement reactions, one of the reactants completely displaces and replaces part of another reactant. In double displacement reaction, cations and anions in the reactants switch partners to form products.
<em>Options a, c, d, and e involves the displacement of a part of one of the reactants by another reactant while option b does not.</em>
Correct option = b.
Answer:
poor access to health care providers
Explanation:
without health care providers you cant get tested.
Answer:
The element from Group 13.
Explanation:
Following trends of the periodic table, atomic radius of the elements increase going down from the right side and decrease on its way up diagonally to the left. (sry if u can't understand me)