27g x 1cm^2/2.7g = answer in cm^2
Grams cancel out
Since you didn't give the actual volume (or any of the experimental values) I can only tell you how to do it. Do the calculation using the real (determined) volume of the flask. Then, re-do the calculation with v = 125ml. Take the two values and calculate % error; m = measured vol; g = guessed vol.
<span>[mW (m) - mW (g)]/mW (m) x 100% </span>
<span>(they want % error so, if it is negative, just get rid of the sign) </span>
Answer:
The temperature is always lower.
Explanation:
The temperature is always lower at the end of the state as compared to beginning of the state. We can see in the given data, the temperature is higher at the beginning i. e. 140 degree Celsius but with the passage of time, the temperature of a state decreases constantly and the temperature at the end is lower i. e. 20 degree Celsius. So we can conclude that the temperature is always lower.
Answer:
8
Explanation:
1 mole = 6.02 × 10²³ atoms
? moles = 4.816 × 10²⁴ atoms.
? Moles = 4.816 × 10²⁴ ÷ 6.02 × 10²³
? Moles = 8 moles
8 moles of aluminum = 4.816 × 10²⁴