We can use a simple equation to solve this problem.
d = m/v
Where d is the density, m is the mass and v is the volume.
d = ?
m = 87.47 mg = 87.47 x 10⁻³ g
v = 0.03 mL
By applying the equation,
d = 87.47 x 10⁻³ g
/ 0.03 mL
d = 2.92 g/mL
Hence, the density of the mixture is 2.92 g/mL.
Answer:
Describe what is happening within the system when it is at equilibrium in terms of concentrations, reactions that occur, and reaction rates.
Explanation:
The chemical equilibrium state is the state where the rate of forward reaction becomes equal to the rate of backward reaction.
At this stage the change in concentration of reactants becomes equal to the change in concentration of products.
The reaction will never cease.
That is the reason chemical equilibrium is called dynamic equilibrium.
So, forward and backward reactions will be taking place continuously at equal rates.
The pressure of the gas in the flask (in atm) when Δh = 5.89 cm is 1.04 atm
<h3>Data obtained from the question</h3>
The following data were obtained from the question:
- Atmospheric pressure (Pa) = 730.1 torr = 730.1 mmHg
- Change in height (Δh) = 5.89 cm
- Pressure due to Δh (PΔh) = 5.89 cmHg = 5.89 × 10 = 58.9 mmHg
- Pressure of gas (P) =?
<h3>How to determine the pressure of the gas</h3>
The pressure of the gas can be obtained as illustrated below:
P = Pa + PΔh
P = 730.1 + 58.9
P = 789 mmHg
Divide by 760 to express in atm
P = 789 / 760
P = 1.04 atm
Thus, the pressure of the gas when Δh = 5.89 cm is 1.04 atm
Learn more about pressure:
brainly.com/question/22523697
#SPJ1
Missing part of question:
See attached photo
Hey there!
Density = 2.70 g/cm³
Volume = 10.0 cm³
Therefore:
Mass = density * volume
Mass = 2.70 * 10.0
Mass = 27.0 g
Answer: The given statement is true.
Explanation:
Entropy means the measure of randomness present in a substance. That is, an increase in temperature will lead cause more motion in the particles of a substance more will be their kinetic energy.
As a result, there will occur more collisions due to which randomness of molecules will increase. Hence, there will be increase in entropy.
So, when we decrease the temperature then there will be decrease in motion of particles. As a result, lesser number of collisions will take place between them. Hence, degree of randomness will also decrease.
Thus, we can conclude the statement entropy of a system decreases with decrease in temperature, is true.