1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lina2011 [118]
3 years ago
15

Why or why not the following materials will make good candidates for the construction of

Engineering
1 answer:
zvonat [6]3 years ago
3 0

Answer:

Answer explained below

Explanation:

3.] a] A turbine blade is the individual component which makes up the turbine section of a gas turbine. The blades are responsible for extracting energy from the high temperature, high pressure gas produced by the combustor.

The turbine blades are often the limiting component of gas turbines. To survive in this difficult environment, turbine blades often use exotic materials like superalloys and many different methods of cooling, such as internal air channels, boundary layer cooling, and thermal barrier coatings. The blade fatigue failure is one of the major source of outages in any steam turbines and gas turbines which is due to high dynamic stresses caused by blade vibration and resonance within the operating range of machinery.

To protect blades from these high dynamic stresses, friction dampers are used.

b] Thermal barrier coatings (TBC) are highly advanced materials systems usually applied to metallic surfaces, such as on gas turbine or aero-engine parts, operating at elevated temperatures, as a form ofexhaust heat management.

These 100μm to 2mm coatings serve to insulate components from large and prolonged heat loads by utilizing thermally insulating materials which can sustain an appreciable temperature difference between the load-bearing alloys and the coating surface.

In doing so, these coatings can allow for higher operating temperatures while limiting the thermal exposure of structural components, extending part life by reducing oxidation and thermal fatigue.

In conjunction with active film cooling, TBCs permit working fluid temperatures higher than the melting point of the metal airfoil in some turbine applications.

Due to increasing demand for higher engine operation (efficiency increases at higher temperatures), better durability/lifetime, and thinner coatings to reduce parasitic weight for rotating/moving components, there is great motivation to develop new and advanced TBCs.

You might be interested in
Foam weather stripping is often placed in the frames of doors and
Firdavs [7]

Answer:

prevents weathering

Explanation:

6 0
3 years ago
Say you have a random, unordered list containing 4096 four-digit numbers. Describe the most efficient way to: sort the list and
Debora [2.8K]

Answer:

Answer explained below

Explanation:

It is given that numbers are four-digit so maximum value of a number in this list could be 9999.

So we need to sort a list of integers, where each integer lies between [0,9999].

For these given constraints we can use counting sort which will run in linear time i.e. O(n).

--------------------------------------------------------------------------------

Psuedo Code:

countSort(int numList[]) {

int count[10000];

count[i] = 0; for all i;

for(int num in numList){

count[num]+= 1;

}

return count;

}

--------------------------------------------------------------------------------

Searching in this count array will be just O(1).

E.g. Lets say we want to search if 3 was present in the original list.

Case 1: it was present in the original list:

Then the count[3] would have been incremented by our sorting algorithm. so in case element exists then count value of that element will be greater than 0.

Case 2: it was not present:

In this case count[3] will remain at 0. so in case element does not exist then count of that element will be 0.

So to search for an element, say x, we just need to check if count[x]>0.

So search is O(1).

Run times:

Sorting: O(n)

Search: O(1)

6 0
3 years ago
Given a matrix, clockwise-rotate elements in it. Please add code to problem3.cpp and the makefile. Use the code in p3 to test yo
rusak2 [61]

Answer:

/* C Program to rotate matrix by 90 degrees */

#include<stdio.h>

int main()

{

int matrix[100][100];

int m,n,i,j;

printf("Enter row and columns of matrix: ");

scanf("%d%d",&m,&n);

 

/* Enter m*n array elements */

printf("Enter matrix elements: \n");

for(i=0;i<m;i++)

{

 for(j=0;j<n;j++)

 {

  scanf("%d",&matrix[i][j]);

 }

}

 

/* matrix after the 90 degrees rotation */

printf("Matrix after 90 degrees roration \n");

for(i=0;i<n;i++)

{

 for(j=m-1;j>=0;j--)

 {

  printf("%d  ",matrix[j][i]);

 }

 printf("\n");

}

 

return 0;

 

}

5 0
3 years ago
Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabati
Artyom0805 [142]

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

8 0
3 years ago
A water pump delivers 3 hp of shaft power when operating. If the pressure differential between the outlet and the inlet of the p
Natali [406]

Answer:

Mechanical Efficiency =  83.51%

Explanation:

Given Data:

Pressure difference = ΔP=1.2 Psi

Flow rate = V=8ft^3/s\\

Power of Pump = 3 hp

Required:

Mechanical Efficiency

Solution:

We will first bring the change the units of given data into SI units.

P=1.2*6.895 = 8.274KPa\\V=8*0.00283=0.226 m^3/s\\P=3*0.746=2.238KW

Now we will find the change in energy.

Since it is mentioned in the statement that change in elevation (potential energy) and change in velocity (Kinetic Energy) are negligible.

Thus change in energy is

=(Mass * change in P)/density\\= \frac{M*P}{p}\\\\

As we know that Mass = Volume x density

substituting the value

Energy = Volume * density x ΔP / density

Change in energy = Volumetric flow x ΔP

Change in energy = 0.226 x 8.274 = 1.869 KW

Now mechanical efficiency = change in energy / work done by shaft

Efficiency = 1.869 / 2.238

Efficiency = 0.8351 = 83.51%

5 0
3 years ago
Other questions:
  • Tanya Pierce, President and owner of Florida Now Real Estate is seeking your assistance in designing a database for her business
    9·1 answer
  • Power is a fundamental dimension. a) True b) False
    15·1 answer
  • You will be observing laminar-turbulent transition for room temperature (about 20°C) water flowing in a 0.602"" ID pipe (Schedul
    8·1 answer
  • I am standing on the upper deck of the football stadium. I have an egg in my hand. I am going to drop it and you are going to tr
    7·1 answer
  • /* Function findBestVacation * duration: number of vacation days * prefs: prefs[k] indicates the rate specified for game k * pla
    14·1 answer
  • When -iron is subjected to an atmosphere of hydrogen gas, the concentration of hydrogen in the iron, CH (in weight percent), is
    5·1 answer
  • The two shafts of a Hooke’s coupling have their axes inclined at 20°.The shaft A revolves at a uniform speed of 1000 rpm. The sh
    5·1 answer
  • Employees cannot be held legally responsible for an environmental violation.
    14·1 answer
  • What is the biggest disadvantage of using nuclear power to produce electricity?.
    10·1 answer
  • Why do the quadrants in coordinate plane go anti-clockwise?.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!