Answer:
11.8 m/s
Explanation:
At the top of the hill, there are two forces on the car: weight force pulling down (towards the center of the circle), and normal force pushing up (away from the center of the circle).
Sum of forces in the centripetal direction:
∑F = ma
mg − N = m v²/r
At the maximum speed, the normal force is 0.
mg = m v²/r
g = v²/r
v = √(gr)
v = √(9.8 m/s² × 14.2 m)
v = 11.8 m/s
Answer:
1km = o.621371 mile
Explanation:
1.609 kilometers equal 1 mile. The kilometer is a unit of measurement, as is the mille. However, a mile is longer than a kilometer.
The total work done is 5980 Joules and the power expended is 57 Watts.
<h3>What is work done?</h3>
The work done is the work done in the gravitational field as the bucket is raised up Thus work required to remove the bucket Wb;
Wb = 13.9 kg * 25.9 m * 9.8 m/s^2 = 3530 Joules
Height of the center of mass of chain = 25.9 / 2 = 12.95 m
Work done by the chain Wc;
Wc = 12.95 * 19.3 * 9.8 = 2450 Joules
Total work = 3530 + 2450 = 5980 Joules
Power expended = W / t = 5980 J / 105 sec = 57 J/s = 57 Watts
Learn more about work done:brainly.com/question/13662169
#SPJ1
Answer:
31.1 N
Explanation:
m = mass attached to string = 0.50 kg
r = radius of the vertical circle = 2.0 m
v = speed of the mass at the highest point = 12 m/s
T = force of the string on the mass attached.
At the highest point, force equation is given as

Inserting the values

T = 31.1 N
By definition we have to:
Applied force: It is the external force that acts directly on a body.
Therefore, we can say that if you have an object and push it towards yourself, you are exerting an external force on the object.
This external force was not acting on the object previously, therefore, it is a force that you are applying at that moment.
Answer:
you exert an Applied Force on an object when you pull it towards you
A. Applied Force