Answer: 406 hours
Explanation:

where Q= quantity of electricity in coloumbs
I = current in amperes = 39.5 A
t= time in seconds = ?
The deposition of copper at cathode is represented by:

Coloumb of electricity deposits 1 mole of copper
i.e. 63.5 g of copper is deposited by = 193000 Coloumb
Thus 19.0 kg or 19000 g of copper is deposited by =
Coloumb

(1hour=3600s)
Thus it will take 406 hours to plate 19.0 kg of copper onto the cathode if the current passed through the cell is held constant at 39.5 A
The balanced chemical equation is given as:
2CH3CH2OH(l) → CH3CH2OCH2CH3(l) + H2O(l)
We are given the yield of CH3CH2OCH2CH3 and the amount of ethanol to be used for the reaction. These values will be the starting point for the calculations.
Theoretical amount of product produced:
329 g CH3CH2OH ( 1 mol / 46.07 g ) ( 1 mol CH3CH2OCH2CH3 / 2 mol CH3CH2OH ) (74.12 g / mol ) = 264.66 g CH3CH2OCH2CH3
% yield = .775 = actual yield / 264.66
actual yield = 205.11 g CH3CH2OCH2CH3
A covalent bond is formed between two non-metals that have similar electronegativities.
An <em>i</em><em>o</em><em>n</em><em>i</em><em>c</em><em> </em><em>b</em><em>o</em><em>n</em><em>d</em> is formed between a metal and a non-metal. Non-metals(-ve ion) are "stronger" than the metal(+ve ion) and can get electrons very easily from the metal. These two opposite ions attract each other and form the ionic bond.
Answer:
403 Seconds in Minutes is about 6 minutes.
Explanation:
Now, because I don't know if you're labeling your 1500 as meters or miles, I'm assuming it's miles.
I'm going to take a gander at your question.
Since you're technically going so fast for some odd reason.
Your answer should most definitely be 403 MPH