Electron - negligible mass, negative charge, orbits the nucleus
Proton - 1 AMU, positive charge, in the nucleus
Neutron, 1 AMU, no charge, in the nucleus
Answer:
1 the reproductive system. and the immune system is there to fight off any viruses or bacteria that had entered your body. If the bacteria is harmful it will be fought.
Answer:
Double replacement
Precipitation reaction
Explanation:
You have the reaction:
REACTANTS PRODUCTS
BaCl₂ (aq) + Na₂SO₄ (aq) ⇒ 2NaCl (aq) + BaSO₄(s)
The general form of a double replacement reaction is the following:
AB + CD ⇒ CD + AB
The reactants basically, exchanged partners. In the case of your problem, Barium(Ba) and Sodium(Na) switched places. So this makes it a double-replacement reaction.
Now how do I know it is a precipitation reaction. A precipitation reaction occurs when two solutions combine and salt is formed. Salt is solid, so how do I know that's what occured? Look at your equation again:
BaCl₂ (aq) + Na₂SO₄ (aq) ⇒ 2NaCl (aq) + BaSO₄(s)
aq means aqueous (liquid)
s means solid
If you look at the product formed in the reaction, from two solutions, it formed a solid. So this is your clue as to why it is a precipitation reaction.
Answer is: mass of butane is D)11.6 g.
m(butane) = 50,0 g.
V(CO₂) = 17,9 L.
n(CO₂) = V(CO₂) ÷ Vm.
n(CO₂) = 17,9 L ÷ 22,4 L/mol.
n(CO₂) = 0,8 mol.
From chemical reaction n(CO₂) : n(C₄H₁₀) = 8 : 2.
n(C₄H₁₀) = 0,8 mol ÷ 4.
n(C₄H₁₀) = 0,2 mol.
m(C₄H₁₀) = n(C₄H₁₀) · M(C₄H₁₀).
m(C₄H₁₀) = 0,2 mol · 58 g/mol.
m(C₄H₁₀) = 11,6 g.
Given data: <span>molar mass = 180.2 g/mol in 920.0 ml of water at 25 °c.
</span><span>the vapor pressure of pure water at 25 °c is 23.76 mm hg.
</span>Asked: <span>the vapor pressure of a solution made by dissolving 109 grams of glucose
</span><span>
Solution:
moles glucose = 109 g/ 180.2 g/mol=0.605
mass water = 920 mL x 1 g/mL = 920 g
moles water = 920 g/ 18.02 g/mol=51.1
mole fraction water = 51.1 / 51.1 + 0.605 =0.988
vapor pressure solution = 0.988 x 23.76 = 23.47 mm Hg</span>