First, we calculate of the concentration of the H+ ions in the solution from the pH given. Then, calculate the new concentration after dilution. Calculation are as follows:
pH = -log[H+]
5 = -log[H+]
[H+] = 1 x 10^-5 M
M1V1 = M2V2
<span>1 x 10^-5 M (V1) = M2(100V1)
</span>M2 = 1 x 10^-7
pH = -log[<span>1 x 10^-7</span>]
pH = 7
<h2><em>Summary: Jupiter is the largest and widest planet in the solar system. Jupiter's moon name is Europa. Jupiter only has one 79 moons that we know of. Jupiter is the 5th planet from the sun.Jupiter’s mass is 318 times larger than Earth.A year on Jupiter is equal to 11.9 Earth Years.</em></h2>
So, you need to have same ammount of atoms on the left and on the right side of the equation. You need to count the ammount of attoms of every substance on the left, and make sure that on the right side the ammount is same. For example in the 1st one it’s 6Sn+2P4=2Sn3P4, so that you have 6atoms of Sn on the left and 6 atoms of Sn on the right, same with the P
Solving part-1 only
#1
KMnO_4
- Transition metal is Manganese (Mn)
#2
Actually it's the oxidation number of Mn
Let's find how?




- x is the oxidation number
#3
- Purple as per the color of potassium permanganate
#4

No diagram is given therefore I cannot answer however, use this for reference.
The atomic mass of an atom would be the number of protons PLUS the number of neutrons. Because this atom shown has 6 protons and 6 neutrons, they add up to 12. In this case, the atomic mass of this atom is 12. Atomic number is the number of protons in an atom, in this case it is 6. The atomic number is 6.