1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zlopas [31]
3 years ago
14

Which best compares AC and DC?

Physics
2 answers:
Amiraneli [1.4K]3 years ago
7 0

Answer: DC flows in one direction, and AC repeatedly switches direction

Explanation:

DC stands for direct current.

AC stands for alternating current.

When current flows only in single direction, it is known as direct current. When current changes direction i.e. it alternates direction, it is known as alternating current.

There are both AC generators and DC generators.

AC generators supply power to home appliances and small motors. DC generators are used to power large electric motors.

Naily [24]3 years ago
5 0
Yea im pretty sure its B
You might be interested in
A person can jump 1.5m on the earth. How high could the person jump on a planet having the twice the mass of the earth and twice
MrMuchimi
F=mg=Gm1m2/r^2
g=Gm2/r^2
g=2Gm2/(2r)^2=2Gm2/4r^2=Gm2/2r^2
So since there is half times the gravity on this unknown planet that has twice earth's mass and twice it's radius, then the person can jump twice as high. 1.5*2= 3m high

5 0
3 years ago
Read 2 more answers
How do mass and speed affect kinetic energy?
Lunna [17]
The mass affects the kinetic energy because the more the mass the more energy is given to the object and the speed<span> affects by making it go faster and longer, so whenever speed goes up so does energy.</span>
6 0
2 years ago
Read 2 more answers
A 1.0-kg ball is attached to the end of a 2.5-m string to form a pendulum. This pendulum is released from rest with the string h
hram777 [196]

Answer:

v_{2}=3.5 m/s

Explanation:

Using the conservation of energy we have:

\frac{1}{2}mv^{2}=mgh

Let's solve it for v:

v=\sqrt{2gh}

So the speed at the lowest point is v=7 m/s

Now, using the conservation of momentum we have:

m_{1}v_{1}=m_{2}v_{2}

v_{2}=\frac{1*7}{2}

Therefore the speed of the block after the collision is v_{2}=3.5 m/s

I hope it helps you!

       

8 0
3 years ago
what was the temperature change in Celsius degree if it is changed from 44 degree fahrenheit to -56 degree fahrenheit​
wel

Answer:

-11.11 degree Celsius

Explanation:

The change was 44 degree fanhereit

To 56 degree fanhereit

Therefore the temperature range can be calculated as follows

56-44

= 12 degree fanhereit to Celsius

= 12-32×5/9

= -20×5/9

= 100/9

= -11.11 degree Celsius

5 0
2 years ago
Two charges, each of 2.9 microC are placed at two corners of a square 50cm on a side, If the charges are on one side of the squa
anyanavicka [17]

Answer:

The magnitude of the electric field and direction of electric field are 146.03\times10^{3}\ N/C and 75.36°.

Explanation:

Given that,

First charge q_{1}= 2.9\mu C

Second chargeq_{2}= 2.9\mu C

Distance between two corners r= 50 cm

We need to calculate the electric field due to other charges at one corner

For E₁

Using formula of electric field

E_{1}=\dfrac{kq}{r'^2}

Put the value into the formula

E_{1}=\dfrac{9\times10^{9}\times2.9\times10^{-6}}{(50\sqrt{2}\times10^{-2})^2}

E_{1}=52200=52.2\times10^{3}\ N/C

For E₂,

Using formula of electric field

E_{1}=\dfrac{kq}{r^2}

Put the value into the formula

E_{2}=\dfrac{9\times10^{9}\times2.9\times10^{-6}}{(50\times10^{-2})^2}

E_{2}=104400=104.4\times10^{3}\ N/C

We need to calculate the horizontal electric field

E_{x}=E_{1}\cos\theta

E_{x}=52.2\times10^{3}\times\cos45

E_{x}=36910.97=36.9\times10^{3}\ N/C

We need to calculate the vertical electric field

E_{y}=E_{2}+E_{1}\sin\theta

E_{y}=104.4\times10^{3}+52.2\times10^{3}\sin45

E_{y}=141310.97=141.3\times10^{3}\ N/C

We need to calculate the net electric field

E_{net}=\sqrt{E_{x}^2+E_{y}^2}

Put the value into the formula

E_{net}=\sqrt{(36.9\times10^{3})^2+(141.3\times10^{3})^2}

E_{net}=146038.69\ N/C

E_{net}=146.03\times10^{3}\ N/C

We need to calculate the direction of electric field

Using formula of direction

\tan\theta=\dfrac{141.3\times10^{3}}{36.9\times10^{3}}

\theta=\tan^{-1}(\dfrac{141.3\times10^{3}}{36.9\times10^{3}})

\theta=75.36^{\circ}

Hence, The magnitude of the electric field and direction of electric field are 146.03\times10^{3}\ N/C and 75.36°.

4 0
2 years ago
Other questions:
  • What happens when an electron moves from a lower energy state to a higher energy state?
    8·2 answers
  • Refrigerant-134a enters the expansion valve of a refrigeration system at 160 psia as a saturated liquid and leaves at 30 psia. D
    14·1 answer
  • A(n) 0.95-kg bucket is tied to a rope of negligible mass that is wrapped around a pole mounted horizontally on frictionless bear
    8·1 answer
  • Why it is not advisable for soldiers to march across the bridge in rythm​
    10·1 answer
  • 8. An airplane heading to Paris from Houston travels 5000 miles at 500 mph. How long will it take the airplane to get to Paris?
    6·2 answers
  • Block A with mass mA=4.6 kg lies on a frictionless incline plane. It is connected by a massless rope over a frictionless, massle
    11·1 answer
  • What does the half life for a radioactive material mean?
    8·1 answer
  • What constant acceleration is required to increase the speed of a car from 20 mi/h to 51 mi/h in 3 seconds
    5·1 answer
  • Please please please help
    11·1 answer
  • How far apart are two conducting plates that have an electric field strength of 4. 4 kv/m between them, if their potential diffe
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!