Answer:
Hydroxy(oxo)bismuthine oxide
Answer:
1750L
Explanation:
Given
Initial Temperature = 25°C
Initial Pressure = 175 atm
Initial Volume = 10.0L
Final Temperature = 25°C
Final Pressure = 1 atm
Final Volume = ?
This question is an illustration of ideal gas law.
From the given parameters, the initial temperature and final temperature are the same; this implies that the system has a constant temperature.
As such, we'll make use of Boyle's Law to solve this;
Boyle's Law States that:
P₁V₁ = P₂V₂
Where P₁ and P₂ represent Initial and Final Pressure, respectively
While V₁ and V₂ represent Initial and final volume
The equation becomes
175 atm * 10L = 1 atm * V₂
1750 atm L = 1 atm * V₂
1750 L = V₂
Hence, the final volume that can be stored is 1750L
Answer:
1-C
2-D
3-B
4-A
Explanation:
I think it is this if it is not , sorry!
uhmm, white.
Explanation:
you'll basically look like blind ig
In 1 mol of CH3OH, you have 4 H-atoms (because 3 H-atoms
are attached to the C-atom, and one H-atom in the OH group). That means
in 0.500 mol of CH3OH, you have 2 H-atoms since it is halved. And then we have Avogadro's constant: 6.02 * 1023.
The question asks for how many hydrogen atoms there are in 0.500 mol CH3OH. Using the numbers that we have (Avogadro's constant and no. of H-atoms), the answer of the question will be something like:
<span>H-atoms in CH3OH = 2 * 6.02 * </span>1023<span> = ~1.2 * 10</span>24