Answer:
The rms voltage (in V) measured across the secondary coil is 459.62 V
Explanation:
Given;
number of turns in the primary coil, Np = 375 turns
number of turns in the secondary coil, Ns = 1875 turns
peak voltage across the primary coil, Ep = 130 V
peak voltage across the secondary coil, Es = ?

The rms voltage (in V) measured across the secondary coil is calculated as;

Therefore, the rms voltage (in V) measured across the secondary coil is 459.62 V
Answer: option 1 : the electric potential will decrease with an increase in y
Explanation: The electric potential (V) is related to distance (in this case y) by the formulae below
V = kq/y
Where k = 1/4πε0
Where V = electric potential,
k = electric constant = 9×10^9,
y = distance of potential relative to a reference point, ε0 = permittivity of free space
q = magnitude of electronic charge = 1.609×10^-19 c
From the formulae, we can see that q and k are constants, only potential (V) and distance (y) are variables.
We have that
V = k/y
We see the potential(V) is inversely proportional to distance (y).
This implies that an increase in distance results to a decreasing potential and a decrease in distance results to an increase in potential.
This fact makes option 1 the correct answer
<span>A particle released during the fission of uranium-235 is a "Neutron"</span>
solution:
As Given plane is flying in east direction.
It throws back some supplies to designated target.
Time taken by the supply to reach the target =10 seconds
g = Acceleration due to gravity = - 9.8 m/s²[Taken negative as object is falling Downwards]
As we have to find distance from the ground to plane which is given by d.
d = 
=
meters
Distance from the ground where supplies has to be land to plane = Option B =490 meters
Answer:
beats per second
Explanation:
Number of heart beats = 
time taken = 
now we have
%
%
now rate of heart beat is defined as number of heart beat per unit of time
so we have


so we have

%
beats per second