Use the ICE table approach as solution:
PbSO₄ --> Pb²⁺ + SO₄²⁻
I - 0 0
C - +s +s
E - s s
Ksp = [Pb²⁺][SO₄²⁻]
1.82×10⁻⁸ = s²
Solving for s,
s = <em>1.35×10⁻⁴ M</em>
Explanation:When the stove turns on the skillet will become very hot because of the conduction of heat transferring from the stove to the skillet.
Write as a proportion, showing the relationship of both given information:
68.0g 0.3g
---------- = -----------
1L x ( your answer)
Cross multiply: 68.0g× X = 0.3g × 1L
68.0g (X)= 0.3g/L
Solve for X by dividing both sides by 68.0 g
68.0g (X) = 0.3g/L
------------- ------------------
68.0g 68.0g
Then enter into calculator 0.3/68 and that will be your solution. Make sure you round up.
Answer:
1) SO₄
²⁻ : (+6)
H₂S : (-2)
Explanation:
a) <u>Sulfate reducers</u> are widespread in muds and other sediments, water-logged soils, etc., environments that contain SO₄ ²⁻ and become anoxic as a result of microbial decomposition.
Sulfate (SO₄ ²⁻), the most oxidized form of sulfur (+6), <u>is reduced</u> by these
sulfate-reducing bacteria. The end product of sulfate reduction is hydrogen sulfide, H₂S, (oxidation number -2) an important natural product that participates in many biogeochemical processes. The H₂S they generate is responsible for the pungent smell (like that of rotten eggs) often encountered near coastal ecosystems. When sulfate-reducing bacteria grow, the H₂S formed from SO₄ ²⁻ reduction combines with the ferrous iron to form black, insoluble ferrous sulfide, which is not toxic. This is important for the conservation of the environment.
b) The net ionic equation under acidic conditions is:
4 H₂ + SO₄²⁻ + H⁺ → HS⁻ + 4 H₂O
Global reaction: SO₄²⁻ + 2H⁺ → H₂S + O₂
Answer:
Explanation:
Given that:
The flow rate Q = 0.3 m³/s
Volume (V) = 200 m³
Initial concentration
= 2.00 ms/l
reaction rate K = 5.09 hr⁻¹
Recall that:







where;







Thus; the concentration of species in the reactant = 102.98 mg/l
b). If the plug flow reactor has the same efficiency as CSTR, Then:
![t _{PFR} = \dfrac{1}{k} \Big [ In ( \dfrac{C_o}{C_e}) \Big ]](https://tex.z-dn.net/?f=t%20_%7BPFR%7D%20%3D%20%5Cdfrac%7B1%7D%7Bk%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7BC_o%7D%7BC_e%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} = \dfrac{1}{k} \Big [ In ( \dfrac{C_o}{C_e}) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7Bk%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7BC_o%7D%7BC_e%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} = \dfrac{1}{5.09} \Big [ In ( \dfrac{200}{102.96}) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7B5.09%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7B200%7D%7B102.96%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} =0.196 \Big [ In ( 1.942) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D0.196%20%5CBig%20%5B%20In%20%28%201.942%29%20%5CBig%20%5D)





The volume of the PFR is ≅ 140 m³