Answer:
6 cm long
Explanation:
F = 4110N
Vo(speed of sound) = 344m/s
Mass = 7.25g = 0.00725kg
L = 62.0cm = 0.62m
Speed of a wave in string is
V = √(F / μ)
V = speed of the wave
F = force of tension acting on the string
μ = mass per unit density
F(n) = n (v / 2L)
L = string length
μ = mass / length
μ = 0.00725 / 0.62
μ = 0.0116 ≅ 0.0117kg/m
V = √(F / μ)
V = √(4110 / 0.0117)
v = 592.69m/s
Second overtone n = 3 since it's the third harmonic
F(n) = n * (v / 2L)
F₃ = 3 * [592.69 / (2 * 0.62)
F₃ = 1778.07 / 1.24 = 1433.927Hz
The frequency for standing wave in a stopped pipe
f = n (v / 4L)
Since it's the first fundamental, n = 1
1433.93 = 344 / 4L
4L = 344 / 1433.93
4L = 0.2399
L = 0.0599
L = 0.06cm
L = 6cm
The pipe should be 6 cm long
Answer:
i believe the answer is d.
Explanation:
its either d or its c. but based off of the fact the it is the only one with a positive charge and the one around it are negative then its most likely d.
Given mass = 2kg, height = 10m,g = 9.8.
We know that Work done W = FD
= > W = (mg)(D)
= > W = (2 * 9.8)(10)
= > W = 196 Joules.
Hope this helps!
We use the formula, to calculate the average speed of the round trip,

Here,
, is total distance covered by plane in total time,
.
For the round trip,

.
Thus,
.
The Answer Is Temprature. Hope This Helps :)