Answer:
Reflection of sound waves also leads to echoes. Echoes are different than reverberations. Echoes occur when a reflected sound wave reaches the ear more than 0.1 seconds after the original sound wave was heard. ... Reflection of sound waves off of curved surfaces leads to a more interesting phenomenon.
Answer:
a) Since the height of the baseball at 99 m was 8.93 m and the fence at that distance is 3m tall, the hit was a home run.
b) The total distance traveled by the baseball was 108.7 m.
Explanation:
a) To know if the hit was a home run we need to calculate the height of the ball at 99 m:

Where:
: is the final height =?
: is the initial height = 1 m
: is the initial vertical velocity = v₀sin(45)
v₀: is the initial velocity = 32.5 m/s
g: is the gravity = 9.81 m/s²
t: is the time
First, we need to find the time by using the following equation:

Now, the height is:
Since the height of the baseball at 99 m was 8.93 m and the fence at that distance is 3m tall, the hit was a home run.
b) To find the distance traveled by the baseball first we need to find the time of flight:



By solving the above quadratic equation we have:
t = 4.73 s
Finally, with that time we can find the distance traveled by the baseball:

Hence, the total distance traveled by the baseball was 108.7 m.
I hope it helps you!
Explanation:
Gravitational potential energy = mgh = (5)(9.81)(7) = 343.35J.
Answer:
x=22.33m
Explanation:
Kinematics equation for constant deceleration:

Answer:
Exercise 1;
The centripetal acceleration is approximately 94.52 m/s²
Explanation:
1) The given parameters are;
The diameter of the circle = 8 cm = 0.08 m
The radius of the circle = Diameter/2 = 0.08/2 = 0.04 m
The speed of motion = 7 km/h = 1.944444 m/s
The centripetal acceleration = v²/r = 1.944444²/0.04 ≈ 94.52 m/s²
The centripetal acceleration ≈ 94.52 m/s²