Answer:
16%
Explanation:
Crotonic acid : C₃H₅CO₂H
C₃H₅CO₂H ⇄ C₃H₅CO₂⁻ + H⁺
C O O
where : C = C ( 1 - ∝ ) , O = C∝
also: Ka = C∝² / ( 1 - ∝ ) ---- ( 1 )
<em>From Alexa data resource : </em>
Pka = 4.69 , [ Ka = 2.04 * 10^-5 = C∝² / ( 1 - ∝ ) ]
back to equation 1
2.04 * 10^-5 = [ ( 0.63 * 10^-3 ) * ∝² / ( 1 - ∝ ) ] ----- ( 2 )
∴ ∝² / ( 1 - ∝ ) = 3.24 * 10⁻²
Resolving equation above
∝ = 0.1645 = 16.45%
Answer:
The answer to your question is the letter C) 5648 kJ/mol
Explanation:
Data
C₁₂H₂₂O₁₁ + 12 O₂ ⇒ 12 CO₂ + 11 H₂O
H° C₁₂H₂₂O₁₁ = -2221.8 kJ/mol
H° O₂ = 0 kJ / mol
H° CO₂ = -393.5 kJ/mol
H° H₂O = -285.8 kJ/mol
Formula
ΔH° = ∑H° products - ∑H° reactants
Substitution
ΔH° = 12(-393.5) + 11(-285.8) - (-2221.8) - (0)
ΔH° = -4722 - 3143.8 + 2221.8
Result
ΔH° = -5644 kJ/mol
Answer:
C, 42g
Explanation:
In thermal equilibrium, both bodies (metal pellet and water) both have the same final temperature (46.3°C).
Assuming no heat is lost to surroundings,
the energy lost from metal pellet = energy gained for water
Since E = mc∆T
(energy = mass x specific heat capacity x temperature change)
mc∆T (metal pellet) = mc∆T (water)
100 x 0.568 x (116-46.3) = m 4.184 (46.3 - 23.8)
3958.96 = 94.14m
m = 42g
Answer:
Explanation:
Secondary consumers are organisms that eat primary consumers for energy. Primary consumers are always herbivores, or organisms that only eat autotrophic plants.
Carnivores only eat other animals, and omnivores eat both plant and animal matter.
For one mole of hydrogen, H, the atomic mass is 1 g per mole. Hydrogen contains 1 proton and zero neuton. A neutral atom of hydrigen also contains 1 electron.