Answer:
[OH-] = 1.0 x 10-10 M
Explanation:
The acidity of a solution can be determined directly from the concentration of the hydrogen ions and indirectly from the concentrations of the hydroxide ions.
Generally, for a neutral solution we have;
[H3O+] = [OH-] = 1.0 x 10-7 M
For an acidic solution;
[H3O+] > 1.0 x 10-7 M
[OH-] < 1.0 x 10-7 M
Comparing the options the correct option is;
[OH-] = 1.0 x 10-10 M
Purple stem plants can be formed by genetics, they use their energy slightly different from other plants, they use less energy, but that may also be because of bad nutrition, and because they may be hungry for nutrients.
Answer:
Keep it simple. If all the oxygen contained in the 200 grams of potassium chlorate is produced in the decomposition, then all we have to do is find out how many grams of oxygen are there in the 200 grams. This we can do by calculating the ratio of oxygen mass to the whole. Using 39.1 for potassium, 35.45 for chlorine and 3 times 16, or 48 for the oxygen, we get a total of 122.55 grams per mole for potassium chlorate, of which 48 grams are oxygen. This ratio is 48/122.55. This ratio times the original 200 grams of the compound, gives us 78.34 grams of oxygen produced.
Explanation:
Too much money and dangerous
Variations in electronegativity prompt in the unequal halves of electrons in polar molecules because when one atom is more electronegative than the other, it becomes more polar than the other.
It results in the more electronegative atom to have a slightly negative (-ve) charges, and the other atom to have partial or slightly positive(+ve) charges.
Polar molecules have unequal sharing of electrons because the atoms have unequal attraction for electrons so the sharing is unequal.
The larger the difference in electronegativity between the two atoms, the more the polar the bond.
Hydrogen bonds are involved in unequal sharing of electrons between two atoms.
To know more about variations in electronegativity in polar molecules here :
brainly.com/question/18260584?referrer=searchResults
#SPJ4