Answer:
See explanation
Explanation:
The equation of the reaction is;
C3H8 + 5O2 ----> 3CO2 + 4H2O
Number of moles of C3H8 = 132.33g/44g/mol = 3 moles
1 mole of C3H8 yields 3 moles of CO2
3 moles of C3H8 yields 3 × 3/1 = 9 moles of CO2
Number of moles of oxygen = 384.00 g/32 g/mol = 12 moles
5 moles of oxygen yields 3 moles of CO2
12 moles of oxygen yields 12 × 3/5 = 7.2 moles of CO2
Hence C3H8 is the limiting reactant.
Mass of CO2 produced = 9 moles of CO2 × 44 g/mol = 396 g of CO2
1 moles of C3H8 yields 4 moles of water
3 moles of C3H8 yields 3 × 4/1 = 12 moles of water
Mass of water = 12 moles of water × 18 g/mol = 216 g of water
b) Actual yield = 269.34 g
Theoretical yield = 396 g
% yield = actual yield/theoretical yield × 100/1
% yield = 269.34 g /396 g × 100
% yield = 68%
Answer:
160 gm
Explanation:
Five times as much water means you can dissolve 5 times as much potassium nitrate 5 x 32 = 160 gm <u> <===== this seems unlikely though as I doubt 32 g of potassium nitrate will dissolve in only 1 cm^3 of water 1 cm^3 of water is only 1 gm of water </u>
Answer:

Explanation:
First, find the mass of empirical formula, CH. 12.01 g/mol is for carbon, and 1.008 g/mol is for hydrogen. 12.01+1.008=13.018 G/mol CH. Divide 78.110 G/mol by 13.018 g/mol. You get approximately 6. Multiply that by the subscript of each element. 6(CH)=

<span>The electron transport process makes water and ATP and is sometimes called Oxidative phosphorylation because it requires oxygen.</span>
Most solids a) are dense and difficult to compress.
Most solids are closely compacted, their molecules are close together and vibrate. They don't move freely like gas or water molecules do.
They are difficult to be squeezed or flattened.