I think learn to drive is the most important part
Answer:
F centripetal force (tension) = 275.9 N
Explanation:
Given data:
Mass = 1.50 kg
Radius = 0.520 m
Velocity of ball = 9.78 m/s
Tension = ?
Solution:
F centripetal force (tension) = m.v² / R
F centripetal force (tension) = 1.50 kg . (9.78 m/s)² / 0.520 m
F centripetal force (tension) = 1.50 kg . 95.65 m²/s² / 0.520 m
F centripetal force (tension) = 143.5 kg. m²/s² / 0.520 m
F centripetal force (tension) = 275.9 N
<span>The answer is B.They cannot produce enough heat to keep their bodies warm.
In order to survive, the alligators rely on warm weather, and they are most active when the environment is 82-92 degrees Fahrenheit. They can survive below or above this temperature range but they may spend that time struggling to stay warm or stay cool.
</span>
Answer:
The mass of Na₂O that can be produced by the chemical reaction of 4.0 grams of sodium with excess oxygen in the reaction is 5.39 grams.
Explanation:
You know the balanced reaction:
4 NA + O₂ ⟶ 2 Na₂O
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction) react and are produced:
- Na: 4 moles
- O₂: 1 mole
- Na₂O: 2 moles
Being:
the molar mass of the compounds participating in the reaction is:
- Na: 23 g/mole
- O₂: 2*16 g/mole= 32 g/mole
- Na₂O: 2*23 g/mole +16 g/mole= 62 g/mole
Then by stoichiometry of the reaction they react and are produced:
- Na: 4 moles* 23 g/mole= 92 g
- O₂: 1 mole*32 g/mole= 32 g
- Na₂O: 2 moles* 62 g/mole= 124 g
Then you can apply the following rule of three: if 92 grams of Na produce 124 grams of Na₂O, 4 grams of Na, how much mass of Na₂O does it produce?

mass of Na₂O=5.39 g
<em><u>The mass of Na₂O that can be produced by the chemical reaction of 4.0 grams of sodium with excess oxygen in the reaction is 5.39 grams.</u></em>
Answer:
a. The specific heat capacity of the gaseous ethanol is less than the specific heat capacity of liquid ethanol.
Explanation:
The heating curve is a curve that represents temperature (T) in the y-axis vs. added heat (Q) in the x-axis. The slope is T/Q = 1/C, where C is the heat capacity. Then, the higher the slope, the lower the heat capacity. For a constant mass, it can also represent the specific heat capacity (c).
Heats of vaporization and fusion cannot be calculated from these sections of the heating curve.
<em>Which statement below explains that?</em>
<em>a. The specific heat capacity of the gaseous ethanol is less than the specific heat capacity of liquid ethanol.</em> YES.
<em>b. The specific heat capacity of the gaseous ethanol is greater than the specific heat capacity of liquid ethanol.</em> NO.
<em>c. The heat of vaporization of ethanol is less than the heat of fusion of ethanol.</em> NO.
<em>d. The heat of vaporization of ethanol is greater than the heat of fusion of ethanol.</em> NO.