1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
My name is Ann [436]
4 years ago
10

A hydraulic jump is induced in an 80 ft wide channel. The water depths on either side of the jump are 1 ft and 10 ft. Please cal

culate: a) The velocity of the faster moving flow. b) The flow rate (discharge). c) The Froude number of the sub-critical flow. d) The flow energy dissipated in the hydraulic jump (expressed as percentage of the energy prior to the jump). e) The critical depth.
Engineering
1 answer:
Sphinxa [80]4 years ago
4 0

Answer:

a) The velocity is 42.0833 ft/s

b) The flow rate is 3366.664 ft³/s

c) The Froude number is 0.2345

d) The flow energy dissipated (expressed as percentage of the energy prior to the jump) is 18.225 ft

e) The critical depth is 3.8030 ft

Explanation:

Given data:

80 ft wide channel, L

1 ft and 10 ft water depths, d₁ and d₂

Questions: a) Velocity of the faster moving flow, v = ?

b) The flow rate (discharge), q = ?

c) The Froude number, F = ?

d) The flow energy dissipated, E = ?

e) The critical depth, dc = ?

a) For the velocity:

\frac{d_{2} }{d_{1} } =\frac{1}{2} (\sqrt{1+8F^{2} } -1)

10*2=\sqrt{1+8F^{2} } -1

Solving for F:

F = 7.4162

v=F\sqrt{gd_{1} }

Here, g = gravity = 32.2 ft/s²

v=7.4162*\sqrt{32.2*1} =42.0833ft/s

b) The flow rate:

q=v*L*d_{1} =42.0833*80*1=3366.664ft^{3} /s

c) The Froude number:

v_{2} =\frac{q}{L*d_{2} } =\frac{3366.664}{80*10} =4.2083ft/s

F=\frac{v_{2}}{\sqrt{gd_{2} } } =\frac{4.2083}{\sqrt{32.2*10} } =0.2345

d) The flow energy dissipated:

E=\frac{(d_{2}-d_{1})^{3} }{4d_{1}d_{2}} =\frac{(10-1)^{3} }{4*1*10} =18.225ft

e) The critical depth:

d_{c} =(\frac{(\frac{q}{L})^{2}  }{g} )^{1/3} =(\frac{(\frac{3366.664}{80})^{2}  }{32.2} )^{1/3} =3.8030ft

You might be interested in
Oil with a density of 850 kg/m3 and kinematic viscosity of 0.00062 m2 /s is being discharged by a 8-mm-diameter, 40-m-long horiz
Naddik [55]

Answer:

Q = 5.06 x 10⁻⁸ m³/s

Explanation:

Given:

v=0.00062 m² /s       and ρ= 850 kg/m³  

diameter = 8 mm

length of horizontal pipe = 40 m

Dynamic viscosity =

μ =  ρv

   =850 x 0.00062

   = 0.527 kg/m·s  

The pressure at the bottom of the tank is:

P₁,gauge = ρ g h = 850 x 9.8 x 4 = 33.32 kN/m²

The laminar flow rate through a horizontal pipe is:

Q = \dfrac{\Delta P \pi D^4}{128 \mu L}

Q= \dfrac{33.32 \times 1000 \pi\times 0.008^4}{128 \times 0.527 \times 40}

Q = 5.06 x 10⁻⁸ m³/s

4 0
3 years ago
Can be used to eliminate rubbing friction of wheel touching frame. 1.Traction 2.Thrust washer
Vilka [71]

Answer:

thrust washer

can be used to eliminate rubbing friction of wheel touching frame

5 0
3 years ago
A cylindrical metal specimen having an original diameter of 12.8 mm and gauge length of 50.80 mm is pulled in tension until frac
Sedaia [141]

Answer:

%Reduction in area = 73.41%

%Reduction in elongation = 42.20%

Explanation:

Given

Original diameter = 12.8 mm

Gauge length = 50.80mm

Diameter at the point of fracture = 6.60 mm (0.260 in.)

Fractured gauge length = 72.14 mm.

%Reduction in Area is given as:

((do/2)² - (d1/2)²)/(do/2)²

Calculating percent reduction in area

do = 12.8mm, d1 = 6.6mm

So,

%RA = ((12.8/2)² - 6.6/2)²)/(12.8/2)²

%RA = 0.734130859375

%RA = 73.41%

Calculating percent reduction in elongation

%Reduction in elongation is given as:

((do) - (d1))/(d1)

do = 72.14mm, d1 = 50.80mm

So,

%RA = ((72.24) - (50.80))/(50.80)

%RA = 0.422047244094488

%RA = 42.20%

3 0
4 years ago
A circular hoop sits in a stream of water, oriented perpendicular to the current. If the area of the hoop is doubled, the flux (
natka813 [3]

Answer:

The flux (volume of water per unit time) through the hoop will also double.

Explanation:

The flux = volume of water per unit time = flow rate of water through the hoop.

The Flow rate of water through the hoop is proportional to the area of the hoop, and the velocity of the water through the hoop.

This means that

Flow rate = AV

where A is the area of the hoop

V is the velocity of the water through the hoop

This flow rate = volume of water per unit time = Δv/Δt =Q

From all the above statements, we can say

Q = AV

From the equation, if we double the area, and the velocity of the stream of water through the hoop does not change, then, the volume of water per unit time will also double or we can say increases by a factor of 2

3 0
4 years ago
What is the definition of a duty cycle?
ira [324]

Answer:

D=\frac{PW}{T}*100

Explanation:

In electrical terms, is the ratio of time in which a load or circuit is ON compared to the time in which the load or circuit is OFF.

The duty cycle or power cycle, is expressed as a percentage of the activation time. For example, a 70% duty cycle is a signal that 70% of the time is activated and the other 30% disabled. Its equation can be expressed as:

D=\frac{PW}{T}*100

Where:

D=Duty\hspace{3}Cycle

PW=Pulse\hspace{3}Active\hspace{3}Time

T=Period\hspace{3}of\hspace{3}the\hspace{3}Signal

Here is a picture that will help you understand these concepts.

5 0
3 years ago
Other questions:
  • A receptacle, plug, or any other electrical device whose design limits the ability of an electrician to come in contact with any
    14·1 answer
  • Which type of load is not resisted by a pinned joint? A) Moment B) Shear C) Axial D) Compression
    7·1 answer
  • -0-1"<br> -0<br> -20<br> -15<br> -10<br> 0<br> -5
    9·1 answer
  • Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y
    7·1 answer
  • Consider the following signal:
    8·1 answer
  • (25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinuso
    9·1 answer
  • Unitate de masura in SI pt F​
    11·1 answer
  • Complete the following sentence.
    10·1 answer
  • Which design activity is part of the design for manufacturability (DFM) methodology?
    10·1 answer
  • What information in drawing's title block identifies the project?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!