Explanation:
It is given that,
Mass of the football player, m = 92 kg
Velocity of player, v = 5 m/s
Time taken, t = 10 s
(1) We need to find the original kinetic energy of the player. It is given by :


k = 1150 J
In two significant figure, 
(2) We know that work done is equal to the change in kinetic energy. Work done per unit time is called power of the player. We need to find the average power required to stop him. So, his final velocity v = 0
i.e. 

P = 115 watts
In two significant figures, 
Hence, this is the required solution.
I believe the answer in Covalent Bond.
Answer:
e. The torque is the same for all cases.
Explanation:
The formula for torque is:
τ = Fr
where,
τ = Torque
F = Force = Weight (in this case) = mg
r = perpendicular distance between force an axis of rotation
Therefore,
τ = mgr
a)
Here,
m = 200 kg
r = 2.5 m
Therefore,
τ = (200 kg)(9.8 m/s²)(2.5 m)
<u>τ = 4900 N.m</u>
<u></u>
b)
Here,
m = 20 kg
r = 25 m
Therefore,
τ = (20 kg)(9.8 m/s²)(25 m)
<u>τ = 4900 N.m</u>
<u></u>
c)
Here,
m = 8 kg
r = 62.5 m
Therefore,
τ = (8 kg)(9.8 m/s²)(62.5 m)
<u>τ = 4900 N.m</u>
<u></u>
Hence, the correct answer will be:
<u>e. The torque is the same for all cases.</u>
Answer:
v = 66 m/s
Explanation:
Given that,
The initial velocity of a car, u = 0
Acceleration of the car, a = 11 m/s²
We need to find the final velocity of the toy after 6 seconds.
Let v is the final velocity. It can be calculated using first equation of motion. It is given by :
v = u +at
v = 0 + 11 m/s² × 6 s
v = 66 m/s
So, the final velocity of the car is 66 m/s.
Answer
given,
diameter of the pipe is = (14 ft)4.27 m
minimum speed of the skater must have at very top = ?
At the topmost point of the pipe the normal force will be equal to zero.
F = mg
centripetal force acting on the skateboard

equating both the force equation


r = d/2 = 14/ 2 = 7 ft
or
r = 4.27/2 = 2.135 m
g = 32 ft/s² or g = 9.8 m/s²

v = 14.96 ft/s
or

v = 4.57 m/s