Answer:
Explanation:
area of the coil A = .08 x .08 = 64 x 10⁻⁴ m ²
flux through the coil Φ = area of coil x no of turns x magnetic field
= 64 x 10⁻⁴ x 50 x B where B is magnetic field
emf induced = dΦ / dt = ( 64 x 10⁻⁴ x 50 x B - 0 ) / .2
= 1.6 B
current induced = emf induced / resistance
12 x 10⁻³ = 1.6 B / 15
B = 112.5 x 10⁻³ T .
Answer:
hello the diagram relating to this question is attached below
a) angular accelerations : B1 = 180 rad/sec, B2 = 1080 rad/sec
b) Force exerted on B2 at P = 39.2 N
Explanation:
Given data:
Co = 150 N-m ,
<u>a) Determine the angular accelerations of B1 and B2 when couple is applied</u>
at point P ; Co = I* ∝B2'
150 = ( (2*0.5^2) / 3 ) * ∝B2
∴ ∝B2' = 900 rad/sec
hence angular acceleration of B2 = ∝B2' + ∝B1 = 900 + 180 = 1080 rad/sec
at point 0 ; Co = Inet * ∝B1
150 = [ (2*0.5^2) / 3 + (2*0.5^2) / 3 + (2*0.5^2) ] * ∝B1
∴ ∝B1 = 180 rad/sec
hence angular acceleration of B1 = 180 rad/sec
<u>b) Determine the force exerted on B2 at P</u>
T2 = mB1g + T1 -------- ( 1 )
where ; T1 = mB2g ( at point p )
= 2 * 9.81 = 19.6 N
back to equation 1
T2 = (2 * 9.8 ) + 19.6 = 39.2 N
<u />
Answer:
so am i ._. 15 not 1 ofc lol
Explanation:
Impulse describes the change of momentum. Since we don't know the momentum of the soccer ball before the hit, this question is hard to answer. If you assume the momentum of the ball before the hit was p = 0, then the change in momentum is just Δp = Impulse = mv.