Answer:
The change in temperature that occurs when 8000 J of heat is used by a mass 75 g of water is 25.4 °C
Explanation:
H = mc ΔT
m = 75 g
c = 4. 200 J/ g °C
H = 8000 J
ΔT =?
Rearranging the formula, making ΔT the subject of formula;
ΔT = H / m c
ΔT = 8000 / 75 * 4.200
ΔT = 8000 / 315
ΔT = 25.4 °C
Answer:
m = E × Q
And Q = I × t
m = E × I × t
Where m = mass in grams
Q = quantity of electricity in coulomb
I = current in ampere
t = time in seconds
E = electrochemical equivalent of the substance
Explanation:
Answer:
NAD+, FAD.
Explanation:
The citric acid cycle is popularly known as the Kreb's cycle. The cycle involve the oxidation of acetyl-CoA to produce energy. The Kreb's cycle is a chemical process that produces produces two carbon dioxide molecules,NADH,FADH2 and one ATP.
When oxygen is depleted, the citric acid cycle stops, apart from oxygen NAD+ and FAD could be added to the system to restore citric acid cycle activity. NAD+ acts as an electron acceptor.
Citric acid cycle/Kreb's cycle is an aerobic process that occurs in the mitochondria and produces thirty-six(36) ATPs.
Answer:
11.2 M → [HCl]
Explanation:
Solution density = Solution mass / Solution volume
35.38 % by mass, is the same to say 35.38 g of solute in 100 g of solution.
Let's determine the moles of our solute, HCl
35.38 g . 1 mol/36.45 g = 0.970 moles
Let's replace the data in solution density formula
1.161 g/mL = 100 g / Solution volume
Solution volume = 100 g / 1.161 g/mL → 86.1 mL
Let's convert the volume to L → 86.1 mL . 1L / 1000 mL = 0.0861 L
Molarity (M) → mol/L = 0.970 mol / 0.0861 L → 11.2 M