Answer:
Approximately 22.37 days, will it take for the water to be safe to drink.
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
k is rate constant
Given that:- k = 0.27 (day)⁻¹
= 0.63 mg/L
mg/L
Applying in the above equation as:-
<u>Approximately 22.37 days, will it take for the water to be safe to drink.</u>
All of the questions here are pertaining to the colligative properties of a solution and the preparation of solutions. Maybe, it would be best if you understand the equations to be used in order to answer these questions.<span>
Freezing point depression or Boiling point elevation:
</span><span>ΔT = -K (m) (i)
</span>ΔT is the change in the freezing point or the boiling point not the freezing point/boiling point. Therefore, it should be added to the original value of the property of the solvent.
<span>
K is a constant called the molal freezing point depression constant and for the boiling point is the boiling point elevation constant. It is a property of the solvent.
</span><span>
m is the concentration of the solute in the solvent in terms of molality or kg solute/kg solvent.
</span><span>
i is the vant hoff factor which will represent the number of ions which the solute dissociates when in solution.</span>
Answer:
0.6 grams of hydrogen are needed to react with 2.75 g of nitrogen.
Explanation:
When hydrogen and nitrogen react they form ammonia.
Chemical equation:
N₂ + 3H₂ → 2NH₃
Given mass of nitrogen = 2.75 g
Number of moles of nitrogen:
Number of moles = mass/ molar mass
Number of moles = 2.75 g / 28 g/mol
Number of moles = 0.098 mol
Now we will compare the moles of nitrogen with hydrogen from balance chemical equation:
N₂ : H₂
1 : 3
0.098 : 3×0.098 = 0.3 mol
Mass of hydrogen:
Mass = number of moles × molar mass
Mass = 0.3 mol × 2 g/mol
Mass = 0.6 g
Answer:
138.19388999999998 grams of silicon dioxide