Complete Question
The complete question is shown on the first uploaded image
Answer:
a

b
New 
Explanation:
From the question we are told that
The refractive index of the core is 
The refractive index of the cladding is 
Generally according to Snell's law

Where
is the largest angle a largest angle a ray will make with respect to the interface of the fiber and experience total internal reflection
![\theta_{max} = 90 - sin^{-1} [\frac{n_{cladding}}{n_{core}} ]](https://tex.z-dn.net/?f=%5Ctheta_%7Bmax%7D%20%3D%2090%20-%20sin%5E%7B-1%7D%20%5B%5Cfrac%7Bn_%7Bcladding%7D%7D%7Bn_%7Bcore%7D%7D%20%5D)
![\theta_{max} = 90 - sin^{-1} [\frac{1.421}{1.497}} ]](https://tex.z-dn.net/?f=%5Ctheta_%7Bmax%7D%20%3D%2090%20-%20sin%5E%7B-1%7D%20%5B%5Cfrac%7B1.421%7D%7B1.497%7D%7D%20%5D)

Given from the question the the largest angle is 5°
Generally the refraction index of the cladding is mathematically represented as


Answer:
0.8214 m/s^2
Explanation:
Fnet= Fpushed - Ffriction
Fpushed = 12.7N Ffriction = 8.33N
Fnet = 12.7N - 8.33N = 4.37N
Fnet= mass(acceleration)
Fnet = 4.37N mass = 5.32 kg
4.37N = 5.32 kg(acceleration)
acceleration= 0.8214 m/s^2
Answer:
1. Why is Jupiter's rotation dangerous for human survivability?
<h2>=> </h2>
<em><u>Jupiter is the fastest rotating planet in our solar system. One day lasts about 9.5 Earth hours. This creates powerful winds that can whip around the planet at more than 300 mph. About 75 miles below the clouds, you reach the limit of human exploration.</u></em>
2 .Why is Jupiter's planet axis tilt an issue for human survivability?
<h2>=></h2>
<em><u>Jupiter, like Venus, has an axial tilt of only 3 degrees, so there is literally no difference between the seasons. ... The length of each season is roughly three years. Jupiter is the fastest spinning planet in our Solar System, which causes the planet to flatten at the poles and bulge at the </u></em><em><u>equator.</u></em>
3.Why is the diameter of Jupiter an issue for human survivability?
<h2>=></h2>
<em><u>Since </u></em><em><u>,</u></em><em><u>The </u></em><em><u>Jupiter </u></em><em><u>is </u></em><em><u>so </u></em><em><u>huge </u></em><em><u>in </u></em><em><u>mass</u></em><em><u> </u></em><em><u>,</u></em><em><u>The </u></em><em><u>central</u></em><em><u> </u></em><em><u>force</u></em><em><u> </u></em><em><u>toward</u></em><em><u> </u></em><em><u>the </u></em><em><u>centre </u></em><em><u>will </u></em><em><u>be </u></em><em><u>high</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>we'll</u></em><em><u> </u></em><em><u>be </u></em><em><u>forced</u></em><em><u> </u></em><em><u>toward</u></em><em><u> </u></em><em><u>it </u></em><em><u>causing</u></em><em><u> </u></em><em><u>Several</u></em><em><u> </u></em><em><u>problems</u></em><em><u>.</u></em>
a. Speed is defined as rate of change of distance per unit time whereas velocity is defined as rate of change of displacement per unit time.
b.
is the total time taken in the trip
c.
is the total distance
d.
towards right from the starting point.
e. 
f.
towards right.
Explanation:
a.
Speed is a scalar quantity while velocity is a vector quantity.
Speed is defined as rate of change of distance per unit time whereas velocity is defined as rate of change of displacement per unit time.
Speed is a directionless quantity while velocity constitutes direction.
b.
<em>Total time of round trip when we're given:</em>
- distance travelled to the right,

- speed while travelling to the right,

- time spent at gas station,

- time spent while travelling back towards the left,

- speed while travelling to the left,

<em>Now time taken for travelling towards right:</em>



<u>Therefore total time taken in the round trip:</u>



c.
<em>Now, distance travelled towards left:</em>



<u>Therefore total distance:</u>



d.
Now, total displacement:


towards right from the starting point.
e.
<u>Average speed:</u>



f.
<u>Average velocity:</u>


towards right.