It decreases since a air less balloon is heavier than a Aired balloon
Answer:
The particles must be in the correct orientation upon impact.
The particles must collide with enough energy to meet the activation energy of the reaction.
Explanation:
This a problem related to chemical kinetics. The collision theory is one of the theories of reaction rates and it perfectly explains how the effectiveness of colliding molecules dictates the pace of a reaction.
For reactions to occur, there must be collisions between reacting particles. It implies that the collision per unit time and how successful collisions are determines the rate of chemical reactions in most cases. Therefore, for a collision to be successful, colliding particle must have enough energy which is greater than the activation energy of the reaction. In order to also produce the desired products, the colliding particles must be properly oriented.
The molecular formula of methylpropan-1-ol is C4H10O, so the complete combustion equation is: C4H10O + 6O2 --> 4CO2 + 5H2O. This mean to completely combust 1.0mol of methylpropan-1-ol, 6 mol of O2 is required. Molar mass of O2 is 32 g/mol, so 32g/mol x 6mol = 192 g of O2 is required. At room temperature and pressure, the density of O2 is 1.3315 g/L (this can be obtained by density of gas = P/RT). So the volume of O2 = mass/density = 192g/1.3315(g/L) = 144 L = 144 dm3. The answer is B.
Lewis had proposed that the valence electrons of any substance were arranged around its atoms in a cubic configuration. Later on, this was modified when it was learned that the electrons actually orbit the nucleus, similar to the planets orbiting the sun. Moreover, it is now deduced that the electrons are found in regions, known as electron clouds, and their specific, discrete location at a given point in time can not be determined.