Answer:
B)velocity of object decreases
Explanation:
Consider the positive x axis as positive direction
Assume a body moving in negative x-axis direction
It's acceleration also alone negative x-axis direction
So according to our consideration
velocity and acceleration values are negative
That is both are towards negative x direction
But as both velocity and acceleration are in same direction, MAGNITUDE of velocity increases
But as magnitude increases in negative direction, velocity value decreases
But speed value increases(As speed is scalar and velocity is a vector)
█ Answer <span>█
</span><span>The energy from our sun is produced by fusion of hydrogen.
Choice D is the answer.
</span><span>Hope that helps! ★ If you have further questions about this question or need more help, feel free to comment below or leave me a PM. -UnicornFudge aka Nadia
</span>
There are several approaches. The most favourable one (in my opinion) is this one:
1. Asking a question
2. Doing a research (how to answer this question)
3. Creating a hypothesis (NOT a thesis!)
4. Experimenting (to prove the hypothesis)
5. Analysing results from the experiment
6. Writing a thesis
Answer
Any force greater 490N
Explanation
The force required just to make an object slide over a rough horizontal surface is any force greater that the static friction which given by;

Given;

Hence;
F = 0.5 x 100 x 9.8
F = 490N.
We will only need the coefficient of kinetic friction if we were asked to find the force required to keep the object moving uniformly. Usually, the force needed to keep an object moving uniformly over a rough surface is lesser that which is needed to start its motion.
In this problem, we were only asked to find the minimum force required to make the object move which we have done.
Answer:
Induced current, I = 18.88 A
Explanation:
It is given that,
Number of turns, N = 78
Radius of the circular coil, r = 34 cm = 0.34 m
Magnetic field changes from 2.4 T to 0.4 T in 2 s.
Resistance of the coil, R = 1.5 ohms
We need to find the magnitude of the induced current in the coil. The induced emf is given by :

Where
is the rate of change of magnetic flux,
And 



Using Ohm's law, 
Induced current, 

I = 18.88 A
So, the magnitude of the induced current in the coil is 18.88 A. Hence, this is the required solution.