Answer:
460.52 s
Explanation:
Since the instantaneous rate of change of the voltage is proportional to the voltage in the condenser, we have that
dV/dt ∝ V
dV/dt = kV
separating the variables, we have
dV/V = kdt
integrating both sides, we have
∫dV/V = ∫kdt
㏑(V/V₀) = kt
V/V₀ = 
Since the instantaneous rate of change of the voltage is -0.01 of the voltage dV/dt = -0.01V
Since dV/dt = kV
-0.01V = kV
k = -0.01
So, V/V₀ = 
V = V₀
Given that the voltage decreases by 90 %, we have that the remaining voltage (100 % - 90%)V₀ = 10%V₀ = 0.1V₀
So, V = 0.1V₀
Thus
V = V₀
0.1V₀ = V₀
0.1V₀/V₀ = 
0.1 = 
to find the time, t it takes the voltage to decrease by 90%, we taking natural logarithm of both sides, we have
㏑(0.01) = -0.01t
So, t = ㏑(0.01)/-0.01
t = -4.6052/-0.01
t = 460.52 s
Answer:
C
Explanation:
they involve breaking and making chemical bonds
Answer:
It would be hard to test scientifically since it's subjective and can only be proven true if you conducted some experimentations and observations.
Answer: 16N
Explanation:
Given that:
mass of box M= 2 kg
Initial speed V1 = 4 m/s
Final speed V2 = 8 m/s
Time taken T= 0.5 s
Average strength of this force F = ?
Now, recall that Force is the rate of change of momentum per unit time
i.e Force = momentum / time
Hence, F = M x (V2 - V1)/T
F = 2kg x (8 m/s - 4 m/s) / 0.5s
F = 2kg x (4 m/s / 0.5s)
F = 2kg x 8 m/s/s)
F = 16N
Thus, the average strength of this
force is 16 newton.
The three phases of matter differ in properties just because of the proximity of their molecules. The solid phase is the most organized of all. Its atoms are compactly arranged together and has the strongest intermolecular forces to keep them together. This is why they have a definite shape and volume. The liquid phase have molecules that are far away from each other, but not as far as that of the gas phase. The liquid and gas phases can be lumped into one group called fluids because they have the same property - they take the shape and volume of their container.
To make an analogy, see the attached picture for your reference.