Answer:
Molecules in liquids are held to other molecules by intermolecular interactions, which are weaker than the intramolecular interactions that hold the atoms together within molecules and polyatomic ions.
194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Explanation:
In order to convert the given number of molecules of BCl₃ to grams, first we have to convert the molecules to moles.
It is known that 1 moles of any element has 6.022×10²³ molecules.
Then 1 molecule will have
moles.
So 
Thus, 1.66 moles are included in BCl₃.
Then in order to convert it from moles to grams, we have to multiply it with the molecular mass of the compound.
As it is known as 1 mole contains molecular mass of the compound.
As the molecular mass of BCl₃ will be

Mass of boron is 10.811 g and the mass of chlorine is 35.453 g.
Molar mass of BCl₃ = 10.811+(3×35.453)=117.17 g.


So, 194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
B) It was transformed into 350 J of heat energy.
Explanation:
The remaining 350J of energy must have been transformed into 350J of heat energy.
A fan works by converting electrical energy into heat energy.
- According to the third law of thermodynamics "no system is 100% efficient". The conversion of the energy from one form to another involves a lost in energy.
- Heat is one very familiar way by which energy can be lost.
- Some component energy is used to heat the fan in the process and it is a wasted energy.
- Friction surfaces a heat energy in this process.
learn more:
Third law of thermodynamics brainly.com/question/3564634
#learnwithBrainly
(g solute/g solution)*100 = % mass/mass
30 g / 400 * 100
0,075 * 100
= 7,5% w/w
hope this helps!
Answer:
As you cool a matter to absolute zero, their kinetic energy reduces significantly and the molecules slows down and begins to aggregate together. ... As heat is added, the molecules gain more kinetic energy. This shown in their increase motion. When heat is withdrawn, the particles slows down hope this helped