ANSWER:
D) centripetal acceleration.
STEP-BY-STEP EXPLANATION:
When a body performs a uniform circular motion, the direction of the velocity vector changes at every instant. This variation is experienced by the linear vector, due to a force called centripetal, directed towards the center of the circumference that gives rise to the centripetal acceleration.
Therefore, the answer is centripetal acceleration.
A particle with charge -40.0nC is on the x axis at the point with coordinate x=0 . A second particle, with charge -20.0 nC, is on the x axis at x=0.500 m.
No, there is no point at a finite distance where the electric potential is zero.
Hence, Option D) is correct.
What is electric potential?
Electric potential is the capacity for doing work. In the electrical case, a charge will exert a force on some other charge and the potential energy arises. For example, if a positive charge Q is fixed at some point in space, any other positive charge when brought close to it will experience a repulsive force and will therefore have potential energy.
It is also defined as the amount of work required to move a unit charge from a reference point to a specific point against an electric field.
To learn more about electric potential, refer to:
brainly.com/question/15764612
#SPJ4
Answer:
A financial manager.
Explanation:
This is because a financial manager oversees the financial operations of a company. Generally, a financial manager assumes accounting responsibilities for the company. A financial manager is responsible for planning and managing the company's financial resources.
Side note:
Hope this helps!
Please give Brainliest!
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.