Answer:
current going into a junction in a circuit is EQUAL TO the current comming out of the junction.
Explanation:
Krichhoff's Current Law
Kirchhoff's current law (1st Law) states that current flowing into a node (or a junction) must be equal to current flowing out of it.
Answer:
The driver was not telling the truth because it is not possible for a car to hit another car from behind and generate a force to the sides that deflects it from its path.
Explanation:
First, we analyze the driver's statement.
The driver when arriving at the curve, is collided from behind by another car and deviates from his path and crashes into a tree. For the car to go to the tree there must be a force towards the tree.
The net force that causes the car to deviate must be formed by the sum of the motion vector of the first car plus the force that is directed towards the tree.
Here we verify that a car hitting from behind will not generate a force to the sides, but will generate a force in the same direction that the car moves, forward.
Answer:
Capacitance of the second capacitor = 2C
Explanation:

Where A is the area, d is the gap between plates and ε₀ is the dielectric constant.
Let C₁ be the capacitance of first capacitor with area A₁ and gap between plates d₁.
We have

Similarly for capacitor 2

Capacitance of the second capacitor = 2C
1) Assuming an adult person has an average mass of m=80 kg, and assuming it takes about 30 seconds to climb 5 meters of stairs, the energy used by the person is

So the power output is

And since the estimate we made is very rough, we can say that the power output of the person is comparable to the power output of the light bulb of 100 W.
2) Based on the results we found in the previous part of the exercise, since the power output of the person is comparable to the power output of 1 light bulb of 100 W, we can say that the person could have kept burning only one 100-W light bulb during the climb.